Ball-Milled Graphite-Tin Composite Anode Materials for Lithium-Ion Battery

2012 ◽  
Vol 736 ◽  
pp. 127-132
Author(s):  
Kuldeep Rana ◽  
Anjan Sil ◽  
Subrata Ray

Lithium alloying compounds as an anode materials have been a focused for high capacity lithium ion battery due to their highenergy capacity and safety characteristics. Here we report on the preparation of graphite-tin composite by using ball-milling in liquid media. The composite material has been characterized by scanning electron microscope, energy depressive X-ray spectroscopy, X-ray diffraction and Raman spectra. The lithium-ion cell made from graphite-tin composite presented initial discharge capacity of 1065 mAh/g and charge capacity 538 mAh/g, which becomes 528 mAh/g in the second cycle. The composite of graphite-tin with higher capacity compared to pristine graphite is a promising alternative anode material for lithium-ion battery.

2021 ◽  
Vol 23 (6) ◽  
pp. 4030-4038
Author(s):  
Xinghui Liu ◽  
Shiru Lin ◽  
Jian Gao ◽  
Hu Shi ◽  
Seong-Gon Kim ◽  
...  

Simple carbon (nitrogen) doped Mo2P as promoting lithium-ion battery anode materials with extremely low energy barrier and high capacity.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2013 ◽  
Vol 4 ◽  
pp. 699-704 ◽  
Author(s):  
Raju Prakash ◽  
Katharina Fanselau ◽  
Shuhua Ren ◽  
Tapan Kumar Mandal ◽  
Christian Kübel ◽  
...  

A carbon-encapsulated Fe3O4 nanocomposite was prepared by a simple one-step pyrolysis of iron pentacarbonyl without using any templates, solvents or surfactants. The structure and morphology of the nanocomposite was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis and Raman spectroscopy. Fe3O4 nanoparticles are dispersed intimately in a carbon framework. The nanocomposite exhibits well constructed core–shell and nanotube structures, with Fe3O4 cores and graphitic shells/tubes. The as-synthesized material could be used directly as anode in a lithium-ion cell and demonstrated a stable capacity, and good cyclic and rate performances.


2014 ◽  
Vol 40 (7) ◽  
pp. 9107-9120 ◽  
Author(s):  
Xiaoting Lin ◽  
Rui Ma ◽  
Lianyi Shao ◽  
Miao Shui ◽  
Kaiqiang Wu ◽  
...  

2018 ◽  
Vol 27 (4) ◽  
pp. 1067-1090 ◽  
Author(s):  
Xiaohui Shen ◽  
Zhanyuan Tian ◽  
Ruijuan Fan ◽  
Le Shao ◽  
Dapeng Zhang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4747-4753 ◽  
Author(s):  
Manohar Kakunuri ◽  
Sheetal Vennamalla ◽  
Chandra S. Sharma

Resorcinol–formaldehyde (RF) derived carbon xerogel nanoparticles synthesized by inverse emulsification followed by drying and pyrolysis exhibited excellent electrochemical characteristics and thus find potential use as high capacity anode materials for Li ion battery.


2019 ◽  
Vol 12 (2) ◽  
pp. 656-665 ◽  
Author(s):  
Koffi P. C. Yao ◽  
John S. Okasinski ◽  
Kaushik Kalaga ◽  
Ilya A. Shkrob ◽  
Daniel P. Abraham

Spatial distribution of lithium cations in the graphite electrode of a lithium-ion battery is quantified using operando energy dispersive X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document