scholarly journals A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits

2019 ◽  
Vol 4 (1) ◽  
pp. 3-39 ◽  
Author(s):  
Shashank Priya ◽  
Hyun-Cheol Song ◽  
Yuan Zhou ◽  
Ronnie Varghese ◽  
Anuj Chopra ◽  
...  

Abstract Piezoelectric microelectromechanical systems (PiezoMEMS) are attractive for developing next generation self-powered microsystems. PiezoMEMS promises to eliminate the costly assembly for microsensors/microsystems and provide various mechanisms for recharging the batteries, thereby, moving us closer towards batteryless wireless sensors systems and networks. In order to achieve practical implementation of this technology, a fully assembled energy harvester on the order of a quarter size dollar coin (diameter=24.26 mm, thickness=1.75 mm) should be able to generate about 100 μW continuous power from low frequency ambient vibrations (below 100 Hz). This paper reviews the state-of-the-art in microscale piezoelectric energy harvesting, summarizing key metrics such as power density and bandwidth of reported structures at low frequency input. This paper also describes the recent advancements in piezoelectric materials and resonator structures. Epitaxial growth and grain texturing of piezoelectric materials is being developed to achieve much higher energy conversion efficiency. For embedded medical systems, lead-free piezoelectric thin films are being developed and MEMS processes for these new classes of materials are being investigated. Non-linear resonating beams for wide bandwidth resonance are also reviewed as they would enable wide bandwidth and low frequency operation of energy harvesters. Particle/granule spray deposition techniques such as aerosol-deposition (AD) and granule spray in vacuum (GSV) are being matured to realize the meso-scale structures in a rapid manner. Another important element of an energy harvester is a power management circuit, which should maximize the net energy harvested. Towards this objective, it is essential for the power management circuit of a small-scale energy harvester to dissipate minimal power, and thus it requires special circuit design techniques and a simple maximum power point tracking scheme. Overall, the progress made by the research and industrial community has brought the energy harvesting technology closer to the practical applications in near future.

Author(s):  
Alper Erturk ◽  
Ho-Yong Lee ◽  
Daniel J. Inman

Piezoelectric materials have received the most attention for vibration-to-electricity conversion over the last decade. Harmonic excitation is the most commonly investigated form of excitation in piezoelectric energy harvesting and it can be divided into two subgroups as resonant and off-resonant excitations. Although resonant excitation is preferred for extracting the maximum electrical power output from the device, there are several practical cases where it is not possible to excite the energy harvester at its resonance frequency (e.g. varying frequency excitations or very low frequency excitations where the input frequency is much lower than the fundamental resonance frequency). Several researchers have used soft piezoceramics (e.g. PZT-5A and PZT-5H) for power generation under resonant excitation. Typically, these soft piezoceramics have larger piezoelectric strain constant and larger elastic compliance compared to hard piezoceramics (e.g. PZT-4 and PZT-8). However, it is known that hard piezoceramics can have an order of magnitude larger mechanical quality factor compared to soft piezoceramics. Consequently, hard piezoceramics can generate more power under resonant excitation even though researchers have mostly focused on the soft piezoceramics. On the other hand, soft piezoceramics can generate more power for low frequency excitation below the resonance frequency due to their large effective piezoelectric stress constants. This difference is also the case for soft and hard single crystals (e.g. soft PMN-PZT versus hard PMN-PZT-Mn). In addition, single crystals can generate more power than ceramics at low off-resonant frequencies due to their large dynamic flexibilities (which is related to their large elastic compliances). This work investigates the specific advantages of soft and hard piezoceramics and single crystals for vibration-based energy harvesting. An experimentally validated piezoelectric energy harvester model is used to compare the power generation performances of soft and hard ceramics as well as soft and hard single crystals. The soft and the hard piezoceramics considered in this work are PZT-5H and PZT-8, respectively, while the soft and the hard single crystals considered here are PMN-PZT and PMN-PZT-Mn, respectively.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1537
Author(s):  
Neetu Kumari ◽  
Micky Rakotondrabe

In recent years, energy harvesting from ambient vibrations using piezoelectric materials has become the center of attention due to the fact that it has the potential to replace batteries, providing an easy way to power wireless and low power sensors and electronic devices. Piezoelectric material has been extensively used in energy harvesting technologies. However, the most commercially available and widely used piezoelectric materials are lead-based, Pb [ZrxTi1−x] O3 (PZT), which contains more than 60 weight percent lead (Pb). Due to its extremely hazardous effects on lead elements, there is a strong need to substitute PZT with new lead-free materials that have comparable properties to those of PZT. Lead-free lithium niobate (LiNbO3) piezoelectric material can be considered as a substitute for lead-based piezoelectric materials for vibrational energy scavenging applications. LiNbO3 crystal has a lower dielectric constant comparison to the conventional piezoceramics (for instance, PZT); however, at the same time, LiNbO3 (LN) single crystal presents a figure of merits similar to that of PZT, which makes it the most suitable choice for a vibrational energy harvester based on lead-free materials. The implementation was carried out using a global optimization approach including a thick single-crystal film on a metal substrate with optimized clamped capacitance for better impedance matching conditions. A lot of research shows that standard designs such as linear piezoelectric energy harvesters are not a prominent solution as they can only operate in a narrow bandwidth because of their single high resonant peak in their frequency spectrum. In this paper, we propose, and experimentally validate, a novel lead-free piezoelectric energy harvester to harness electrical energy from wideband, low-frequency, and low-amplitude ambient vibration. To reach this target, the harvester is designed to combine multi-frequency and nonlinear techniques. The proposed energy harvesting system consists of six piezoelectric cantilevers of different sizes and different resonant frequencies. Each is based on lead-free lithium niobate piezoelectric material coupled with a shape memory alloy (nitinol) substrate. The design is in the form of a circular ring to which the cantilevers are embedded to create nonlinear behavior when excited with ambient vibrations. The finite element simulation and the experimental results confirm that the proposed lead-free harvester design is efficient at low frequencies, particularly different frequencies below 250 Hz.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Min Zhang ◽  
YingZheng Liu ◽  
ZhaoMin Cao

A concept of energy harvesting from vortex-induced vibrations of a rigid circular cylinder with two piezoelectric beams attached is investigated. The variations of the power levels with the free stream velocity are determined. A mathematical approach including the coupled cylinder motion and harvested voltage is presented. The effects of the load resistance, piezoelectric materials, and circuit combined on the natural frequency and damping of the vibratory system are determined by performing a linear analysis. The dynamic response of the cylinder and harvested energy are investigated. The results show that the harvested level in SS and SP&PS modes is the same with different values of load resistance. For four different system parameters, the results show that the bigger size of cylinder with PZT beams can obtain the higher harvested power.


Author(s):  
Jui-Ta Chien ◽  
Yung-Hsing Fu ◽  
Chao-Ting Chen ◽  
Shun-Chiu Lin ◽  
Yi-Chung Shu ◽  
...  

This paper proposes a broadband rotational energy harvesting setup by using micro piezoelectric energy harvester (PEH). When driven in different rotating speed, the PEH can output relatively high power which exhibits the phenomenon of frequency up-conversion transforming the low frequency of rotation into the high frequency of resonant vibration. It aims to power self-powered devices used in the applications, like smart tires, smart bearings, and health monitoring sensors on rotational machines. Through the excitation of the rotary magnetic repulsion, the cantilever beam presents periodically damped oscillation. Under the rotational excitation, the maximum output voltage and power of PEH with optimal impedance is 28.2 Vpp and 663 μW, respectively. The output performance of the same energy harvester driven in ordinary vibrational based excitation is compared with rotational oscillation under open circuit condition. The maximum output voltage under 2.5g acceleration level of vibration is 27.54 Vpp while the peak output voltage of 36.5 Vpp in rotational excitation (in 265 rpm).


Actuators ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Tao Li ◽  
Pooi Lee

A piezoelectric energy harvester was developed in this paper. It is actuated by the vibration leakage from the nodal position of a high-power ultrasonic cutting transducer. The harvester was excited at a low displacement amplitude (0.73 µmpp). However, its operation frequency is quite high and reaches the ultrasonic range (24.4 kHz). Compared with another low frequency harvester (66 Hz), both theoretical and experimental results proved that the advantages of this high frequency harvester include (i) high current generation capability (up to 20 mApp compared to 1.3 mApp of the 66 Hz transducer) and (ii) low impedance matching resistance (500 Ω in contrast to 50 kΩ of the 66 Hz transducer). This energy harvester can be applied either in sensing, or vibration controlling, or simply energy harvesting in a high-power ultrasonic system.


2014 ◽  
Vol 976 ◽  
pp. 159-163 ◽  
Author(s):  
Roberto Ambrosio ◽  
Hector Gonzalez ◽  
Mario Moreno ◽  
Alfonso Torres ◽  
Rafael Martinez ◽  
...  

In this work is presented a study of a piezoelectric energy harvesting device used for low power consumption applications operating at relative low frequency. The structure consists of a cantilever beam made by Lead Zirconate Titanate (PZT) layer with two gold electrodes for electrical contacts. The piezoelectric material was selected taking into account its high coupling coefficients. Different structures were analyzed with variations in its dimensions and shape of the cantilever. The devices were designed to operate at the resonance frequency to get maximum electrical power output. The structures were simulated using finite element (FE) software. The analysis of the harvesting devices was performed in order to investigate the influence of the geometric parameters on the output power and the natural frequency. To validate the simulation results, an experiment with a PZT cantilever with brass substrate was carried out. The experimental data was found to be very close to simulation data. The results indicate that large structures, in the order of millimeters, are the ideal for piezoelectric energy harvesting devices providing a maximum output power in the range of mW


Sign in / Sign up

Export Citation Format

Share Document