Tumor photothermolysis: using carbon nanomaterials for cancer therapy

2013 ◽  
Vol 5 (3) ◽  
Author(s):  
Alicia Sawdon ◽  
Ethan Weydemeyer ◽  
Ching-An Peng

AbstractCarbon nanomaterials have unique physicochemical properties based solely on their small size, which makes them ideal for nano-oncology. While there have been tremendous advances in the current treatment of high-risk cancers, conventional treatment still causes harm to the surrounding healthy tissue. Carbon nanomaterials such as carbon nanotubes, carbon nanohorns, and graphenes have been increasingly used in the field of cancer photothermal therapy. Through surface functionalization, carbon nanomaterials can be specifically targeted to the tumorous tissue allowing for an increase in therapeutic potential. The unique photo-electron transfer features of carbon nanomaterials coupled with functional moieties, is proving useful for their use in the photothermolysis of cancer cells.

2011 ◽  
Vol 15 (05n06) ◽  
pp. 301-311 ◽  
Author(s):  
Taku Hasobe ◽  
Hayato Sakai

In this review, we report the recent advances in the construction of composite molecular nanoarchitectures of porphyrins and nanoscale carbon materials such carbon nanotubes (CNT), graphenes and polycyclic aromatic hydrocarbons (PAH) for photoinduced electron transfer and light energy conversion. First, we state novel single-wall carbon nanotubes (SWCNT)-driven aggregation of protonated porphyrins to produce supramolecular assemblies in the form of macroscopic bundles. Then, photoinduced electron transfer in self-assembled single-walled carbon nanotube (SWCNT)/zinc porphyrin (ZnP) hybrids utilizing (7,6)- and (6,5)-enriched SWCNTs having different band gaps is reported. Further, we discuss the structural and photoelectrochemical properties of porphyrin-based molecular assemblies of other carbon materials such as stacked-cup carbon nanotubes (SCCNT), carbon nanohorns (CNH) and graphenes. Finally, novel supramolecular patterning formation composed of triphenylene core-centered porphyrin hexamers for electronics is discussed.


Author(s):  
V.M. Shamilov ◽  

Carbon nanomaterials and compositions containing them are attracting increased attention. The high variety of carbon nanomaterials structures and morphologies as well as the simplicity of its surface functionalization, make it possible to effectively select the nanomaterial properties for the target task. The presented study provides an overview of the oil industry stages and shows the main directions of using nanotechnology in them. The main attention is focused on the trends of carbon nanomaterials (nanodiamonds, carbon nanotubes and graphene-like materials) applications in the petroleum extraction stage (drilling and enhanced oil recovery processes).


2018 ◽  
Vol 9 ◽  
pp. 1782-1792 ◽  
Author(s):  
Deepu J Babu ◽  
Divya Puthusseri ◽  
Frank G Kühl ◽  
Sherif Okeil ◽  
Michael Bruns ◽  
...  

Owing to their high stability against corrosive gases, carbon-based adsorbents are preferentially used for the adsorptive removal of SO2. In the present study, SO2 adsorption on different carbon nanomaterials namely carbon nanohorns (CNHs), multiwalled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs) and vertically aligned carbon nanotubes (VACNTs) are investigated and compared against the adsorption characteristics of activated carbon and graphene oxide (GO). A comprehensive overview of the adsorption behavior of this family of carbon adsorbents is given for the first time. The relative influence of surface area and functional groups on the SO2 adsorption characteristics is discussed. The isosteric heat of adsorption values are calculated to quantify the nature of the interaction between the SO2 molecule and the adsorbent. Most importantly, while chemisorption is found to dominate the adsorption behavior in activated carbon, SO2 adsorption on carbon nanomaterials occurs by a physisorption mechanism.


Author(s):  
Jon Whitney ◽  
William Carswell ◽  
Matthew DeWitt ◽  
John Robertson ◽  
Chris Rylander ◽  
...  

Cancer is one of the most deadly diseases and leading cause of death. Laser based photothermal therapy can provide a minimally invasive alternative to surgical resection. The selectivity and effectiveness of laser therapy can be greatly enhanced when photoabsorbing nanoparticles such as nanoshells, single walled carbon nanotubes, multi-walled carbon nanotubes, or single wall carbon nanohorns (SWNHs) are introduced into the tissue[1]. Quantitative methods for measuring tumor response to nanoparticle enhanced laser therapies are critical for determining appropriate laser parameters and nanoparticle properties needed to achieve maximum therapeutic benefit. We have previously reported a new method for measuring two dimensional (2D) spatial viability distributions in cell monolayers in response to laser irradiation and nanoparticles. This method has been refined to allow determination of cell viability in three dimensions (3D) within a more physiologically representative tumor volume. This refined method was used to determine the viability of breast cancer cells suspended within sodium alginate tissue phantoms following treatment with SWNHs and external laser irradiation. The tumor treatment volume was accurately quantified in response to varying laser treatment parameters and nanoparticle concentrations. Spatial cellular viability was also measured in ex vivo pig bladders in response to SWNHs and laser irradiation to provide a more anatomically relevant environment. These new measurement methods enable quantification of spatial viability and therapeutic effectiveness, using 3D tumor environments which are more representative than cell monolayers.


2016 ◽  
Vol 82 (2) ◽  
pp. 70-78 ◽  
Author(s):  
A.D. Dobrzańska-Danikiewicz ◽  
W. Wolany

Purpose: The article characterises rhenium in terms of its physiochemical properties,most popular methods of manufacturing and key applications. The examples of rhenium ata nanometric scales are also presented, taking into account the latest literature reports inthis field. The objective of the article is also to present advanced nanocomposite materialsconsisting of nanostructured rhenium permanently attached to selected carbon nanomaterials- Single Walled Carbon NanoTubes (SWCNTs), Double Walled Carbon NanoTubes (DWCNTs),Multi Walled Carbon NanoTubes (MWCNTs) and Single Walled Carbon Nanohorns (SWCNHs).Design/methodology/approach: The article delineates various manufacturing methodsat a mass and nanometric scale. It also describes a custom fabrication method of carbonrheniumnanocomposites and the results of investigations performed in a transmissionelectron microscope (TEM) for nanocomposites of the following type: MWCNTs-Re,SWCNTs/DWCNTs-Re, SWCNTs-Re and SWCNHs-Re.Findings: Rhenium has been gaining growing importance in industry for years, and itsapplications are very diverse, including: heat resistant alloys, anti-corrosive alloys, rheniumand rhenium alloy coatings, elements of electrical equipment, radiotherapy, chemistry andanalytical technology and catalysis. Carbon-metallic nanocomposites are currently enjoyingstrong attention of research institutions.Research limitations/implications: The development and optimisation of fabricationprocesses of materials containing carbon nanotubes or carbon nanotubes coated with metalnanoparticles, especially rhenium, is a weighty aspect of advanced materials engineering.Practical implications: Newly created nanocomposite materials, developed as a responseto the market demand, are interesting, state-of-the-art materials dedicated to variousapplications, especially as gas or fluid sensors, and as materials possessing catalytic properties.Originality/value: The article describes nanocomposites of the following types: MWCNTs-Re, SWCNTs/DWCNTs-Re, SWCNTs-Re, SWCNHs-Re, created as a result of hightemperaturereduction of a precursor of rhenium (HReO4 or NH4ReO4) to metallic rhenium.This metal is deposited on carbon nanomaterials as nanoparticles, or inside of them asnanoparticles or nanowires whose size and dispersion are dependent upon the conditionsof a technological process.


2009 ◽  
Vol 13 (10) ◽  
pp. 1017-1033 ◽  
Author(s):  
Atula S. D. Sandanayaka ◽  
Osamu Ito

Photoinduced electron transfer in supramolecules composed of porphyrin/phthalocyanine and nanocarbon materials such as fullerenes, single-walled carbon nanotubes, and single-walled carbon nanohorns have been reviewed. With the aid of highly efficient visible-light harvesting porphyrin/phthalocyanine, the photosensitized electron transfer takes place from the photoexcited porphyrin/phthalocyanine to fullerene, which acts as a strong electron acceptor. In the case of nanocarbon materials such as single-walled carbon nanotubes and nanohorns, they may act as electron-trapping sites. From the holes and electrons generated on porphyrin/phthalocyanine-nanocarbons, electron pooling takes place at the strong and stable electron trapper (viologen dication) in solution.


2021 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Moon Sung Kang ◽  
Jong Ho Lee ◽  
Suck Won Hong ◽  
Jong Hun Lee ◽  
Dong-Wook Han

Over the past few decades, carbon nanomaterials, including carbon nanofibers, nanocrystalline diamonds, fullerenes, carbon nanotubes, carbon nanodots, and graphene and its derivatives, have gained the attention of bioengineers and medical researchers as they possess extraordinary physicochemical, mechanical, thermal, and electrical properties. Recently, surface functionalization with carbon nanomaterials in dental and orthopedic implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for osseointegration. Numerous developments in fabrication and biological studies of carbon nanostructures have provided various novel opportunities to expand their application to hard tissue regeneration and restoration. In this minireview, the recent research trends in surface functionalization of orthopedic and dental implants with coating carbon nanomaterials are summarized. In addition, some seminal methodologies for physicomechanical and electrochemical coatings are discussed. In conclusion, it is shown that further development of surface functionalization with carbon nanomaterials may provide innovative results with clinical potential for improved osseointegration after implantation.


Sign in / Sign up

Export Citation Format

Share Document