A rhenium review – from discovery to novel applications

2016 ◽  
Vol 82 (2) ◽  
pp. 70-78 ◽  
Author(s):  
A.D. Dobrzańska-Danikiewicz ◽  
W. Wolany

Purpose: The article characterises rhenium in terms of its physiochemical properties,most popular methods of manufacturing and key applications. The examples of rhenium ata nanometric scales are also presented, taking into account the latest literature reports inthis field. The objective of the article is also to present advanced nanocomposite materialsconsisting of nanostructured rhenium permanently attached to selected carbon nanomaterials- Single Walled Carbon NanoTubes (SWCNTs), Double Walled Carbon NanoTubes (DWCNTs),Multi Walled Carbon NanoTubes (MWCNTs) and Single Walled Carbon Nanohorns (SWCNHs).Design/methodology/approach: The article delineates various manufacturing methodsat a mass and nanometric scale. It also describes a custom fabrication method of carbonrheniumnanocomposites and the results of investigations performed in a transmissionelectron microscope (TEM) for nanocomposites of the following type: MWCNTs-Re,SWCNTs/DWCNTs-Re, SWCNTs-Re and SWCNHs-Re.Findings: Rhenium has been gaining growing importance in industry for years, and itsapplications are very diverse, including: heat resistant alloys, anti-corrosive alloys, rheniumand rhenium alloy coatings, elements of electrical equipment, radiotherapy, chemistry andanalytical technology and catalysis. Carbon-metallic nanocomposites are currently enjoyingstrong attention of research institutions.Research limitations/implications: The development and optimisation of fabricationprocesses of materials containing carbon nanotubes or carbon nanotubes coated with metalnanoparticles, especially rhenium, is a weighty aspect of advanced materials engineering.Practical implications: Newly created nanocomposite materials, developed as a responseto the market demand, are interesting, state-of-the-art materials dedicated to variousapplications, especially as gas or fluid sensors, and as materials possessing catalytic properties.Originality/value: The article describes nanocomposites of the following types: MWCNTs-Re, SWCNTs/DWCNTs-Re, SWCNTs-Re, SWCNHs-Re, created as a result of hightemperaturereduction of a precursor of rhenium (HReO4 or NH4ReO4) to metallic rhenium.This metal is deposited on carbon nanomaterials as nanoparticles, or inside of them asnanoparticles or nanowires whose size and dispersion are dependent upon the conditionsof a technological process.

Author(s):  
M. Nasraoui ◽  
◽  
Yu.V. Litovka ◽  
V.Yu. Dolmatov ◽  
◽  
...  

A method to increase the microhardness of the chromium galvanic coating by adding a mixture of carbon nanomaterials (nanodiamonds, single-walled and multi-walled nanotubes, graphene oxide) into a standard chromium galvanic coating electrolyte was proposed. The increase in the microhardness of the chromium galvanic coating was revealed and explained. This is due to a combination of two mechanisms: the introduction of nanodiamonds into the crystal lattice of the coating metal and the appearance of additional crystallization centers on defects in carbon nanotubes. The method of obtaining parts with a higher service life when using traditional chromium galvanic coating, as well as when using multi-walled carbon nanotubes, single-walled carbon nanotubes, nanodiamonds, and graphene oxide separately, was demonstrated. The best result was obtained using a mixture of nanodiamonds and multi-walled carbon nanotubes. The microhardness of the nanomodified chromium galvanic coating was measured, and it was found to increase by 27 %.


2013 ◽  
Vol 652-654 ◽  
pp. 151-154
Author(s):  
Ting Kai Zhao ◽  
Xing Zhao ◽  
Jin Yan ◽  
Li Du ◽  
Tie Hu Li

With the technological progress in the synthesis of multi-walled carbon nanotubes and single-walled carbon nanotubes, more attention was attracted to the synthesis of carbon nanotubes with diameter distribution, ideal length, different chirality and certain orientation. In recent decade, all these factors have been investigated and a number of progresses have been made for the application of carbon nanotubes. The latest researches on the growth of diameter-controlled single-walled carbon nanotubes are reviewed and discussed. The existing problems and challenges of the synthesis processes have been addressed in the future directions.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Leilei Tian ◽  
Xin Wang ◽  
Li Cao ◽  
Mohammed J. Meziani ◽  
Chang Yi Kong ◽  
...  

Arc-discharge has been widely used in the bulk production of various carbon nanomaterials, especially for structurally more robust single-walled carbon nanotubes. In this paper, the same bulk-production technique was applied to the synthesis of significantly13C-enriched graphitic materials, from which graphene oxides similarly enriched with13C were prepared and characterized. The results demonstrate that arc-discharge is a convenient method to produce bulk quantities of13C-enriched graphene materials from relatively less expensive precursors (largely amorphous13C powders).


2018 ◽  
Vol 52 (24) ◽  
pp. 3325-3340 ◽  
Author(s):  
Doo-Yeol Yoo ◽  
Ilhwan You ◽  
Hyunchul Youn ◽  
Seung-Jung Lee

This study investigates the effect of nanomaterials on the piezoresistive sensing capacity of cement-based composites. Three different nanomaterials—multi-walled carbon nanotubes, graphite nanofibers, and graphene oxide—were considered along with a plain mortar, and a cyclic compressive test was performed. Based on a preliminary test, the optimum flowability was determined to be 150 mm in terms of fiber dispersion. The electrical resistivity of the composites substantially decreased by incorporating 1 wt% multi-walled carbon nanotubes, but only slightly decreased by including 1 wt% graphite nanofibers and graphene oxide. This indicates that the use of multi-walled carbon nanotubes is most effective in improving the conductivity of the composites compared to the use of graphite nanofibers and graphene oxide. The fractional change in resistivity of the composites with nanomaterials exhibited similar behavior to that of the cyclic compressive load, but partial reversibility in fractional change in resistivity was obtained beyond 60% of the peak load. A linear relationship between the fractional change in resistivity and cyclic compression strain (up to 1500 με) was observed in the composites with multi-walled carbon nanotubes, and the gauge factor was found to be 166.6. It is concluded that cement-based composites with 1 wt% multi-walled carbon nanotubes can be used as piezoresistive sensors for monitoring the stress/strain generated in concrete structures.


Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 19
Author(s):  
Buasiri ◽  
Habermehl-Cwirzen ◽  
Krzeminski ◽  
Cwirzen

A cement-based matrix incorporating conductive materials such as carbon nanotubes and carbon nanofibers can have self-sensing capability. Both nanomaterials are characterized by excellent physical, mechanical and electrical properties. A disadvantage is that due to their hydrophobic nature it is very difficult to ensure uniform dispersion throughout the cementitious matrix. To overcome this problem a new nanomodified cement containing in-situ attached CNFs was developed leading to a very homogenous and conductive binder matrix. This study aimed to compare the piezoresistive responses of two types of matrixes, one based on the nanomodified cement and the second containing multi-walled carbon nanotubes. Several mortars were prepared containing either MWCNTs or the nanomodified cement, which partially replaced the untreated cement. The effective amount of the carbon nanomaterials was the same for both types of mixes and ranged from 0 wt.% to 0.271 wt.%, calculated by the all binder weight. Changes in the electrical properties were determined while applying compressive load. The results showed that the binders based on the nanomodified cement have significantly better load sensing capabilities and are suitable for applications in monitoring systems.


Sign in / Sign up

Export Citation Format

Share Document