Oxide ionic conductivity and microstructures of Pr and Sm co-doped CeO2-based systems

energyo ◽  
2019 ◽  
Author(s):  
Aliye Arabacı
2018 ◽  
Vol 16 (1) ◽  
pp. 827-832 ◽  
Author(s):  
Aliye Arabacı

AbstractThe compositions Ce0.80Sm0.2-xPrxO2-δ (x=0-0.12) were prepared through the citrate-nitrate method. The synthesized Pr3+ and Sm3+ co-doped ceria powders with different compositions were calcined at 600°C for 3 h. Phase structure of the calcined powders was characterized by X-Ray diffraction (XRD) analysis.All the calcined samples were found to be ceria based solid solutions of fluorite type structures. The morphology examinations were carried out by scanning electron microscopy (SEM) analysis. Relative density of more than 91% of the theoretical can be achieved by sintering the Ce0.80Sm0.2-xPrxO2-δ pellets at 1400°C for 6 h. The two-probe a.c. impedance spectroscopy was used to study the ionic conductivity of the doped ceria samples. The Ce0.80Sm0.80Pr0.12O1.90 composition showed the highest total ionic conductivity value which is 2.39 × 10−2 S/cm at 600°C.


2010 ◽  
Vol 434-435 ◽  
pp. 710-713 ◽  
Author(s):  
Wei Liu ◽  
Bin Li ◽  
Wei Pan

Sm3+ and Nd3+ co-doped CeO2 solid electrolytes with various thicknesses were prepared by citric-nitrate combustion process. The electrical conductivity as a function of electrolyte thickness was determined by ac impedance spectroscopy. The results showed that the ionic conductivity increases with the decrease of the electrolyte thickness approximately and it was estimated that the conductivity enhancement was due to the increased grain boundary conductivity.


Author(s):  
Horng-Yi Chang ◽  
Yao-Ming Wang

CeO2 materials doped with the di- or tri-valent metals possess high oxide ionic conductivity at low temperature for potential electrolyte use in intermediate temperature solid oxide fuel cell (SOFC). However, multi-elements doped CeO2-based electrolyte, (La1-x-ySrxBay)0.175Ce0.825O2-δ (LSBC) in this work, with pure phase is difficultly synthesized at low calcination temperature. High sintering temperature, e.g. > 1500°C, is also needed in conventional mixed oxide method. In this work, nanoparticles less than 50nm of LSBC can be prepared by solution-evaporation method at constant temperature. Pure fluorite crystal structure can be obtained lower than 700°C. The optimal mole ratio of LSBC/citric acid in prepared solution is 1/2 to achieve homogeneous composition and pure phase of LSBC. Small grain size of about 1μm average is observed for 1300°C-microwave sintered LSBC by solution-evaporation method. The ionic conductivity of 1400°C-conventional sintered and 1300°C-microwave sintered LSBC prepared by solution-evaporation method is about 0.006 S/cm at 600°C but less than 0.004 S/cm at 600°C even for 1500°C-conventional sintered LSBC prepared by mixed oxide method.


2021 ◽  
pp. 413158
Author(s):  
Kenji Tarui ◽  
Tomohiro Oomori ◽  
Yuya Ito ◽  
Tomoyuki Yamamoto

Sign in / Sign up

Export Citation Format

Share Document