scholarly journals Dielectric, mechanical and thermal properties of all-organic PI/PSF composite films by in situ polymerization

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 226-232 ◽  
Author(s):  
Peng Li ◽  
Jiajun Yu ◽  
Shaohua Jiang ◽  
Hong Fang ◽  
Kunming Liu ◽  
...  

AbstractAll-organic high dielectric materials are highly required in the field of modern electronic industry and energy storage. In this work, all-organic polyimide/polysulfone composite films with different amounts of PSF (PI/PSF-X) were prepared by in situ polymerization followed by film casting and thermal treatment. The dielectric, mechanical and thermal properties of these PI/PSF-X composite films are characterized by dielectric measurement, tensile test, thermogravimetric analysis and dynamic mechanical analysis. The results suggest that the PI/PSF-X composite films have good dielectric properties, good mechanical properties and excellent thermal properties, which are suitable for applications in electronic devices in harsh environments, especially in high-temperature environments.

Polimery ◽  
2016 ◽  
Vol 61 (03) ◽  
pp. 172-180 ◽  
Author(s):  
Sandra Paszkiewicz ◽  
Iwona Pawelec ◽  
Anna Szymczyk ◽  
Zbigniew Roslaniec

2008 ◽  
Vol 22 (18n19) ◽  
pp. 3247-3253 ◽  
Author(s):  
B. T. MAROUF ◽  
R. BAGHERI ◽  
R. A. PEARSON

In this investigation, the mechanical and thermal properties of the montmorillonite-epoxy nanocomposites were studied. The epoxy compounds were prepared by in situ polymerization and the intercalation dispersion were obtained as evidenced using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results reveal remarkable stiffening effect and slight toughening effect of the MMT in the epoxy resin and an insight about the crack tip and notch tip toughening mechanism. According to the DMA, the glass transition temperature increases as increasing the MMT content.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1135 ◽  
Author(s):  
Chenchen Liu ◽  
Shuning Liu ◽  
Jian Lin ◽  
Lingling Wang ◽  
Yumin Huang ◽  
...  

Poly(arylene ether nitrile)s with sulfonic and carboxylic groups (SCPEN) were synthesized to investigate their electrical properties. This new series of copolymers were prepared by copolymerization of phenolphthalein, potassium hydroquinonesulfonate, and 2,6-difluorobenzonitrile, in different mole ratios. Their thermal, mechanical and dielectric properties were investigated in detail. By adjusting the composition of sulfonic and carboxylic groups, it can be concluded that the dielectric constant increases with the increase of sulfonic groups, and mechanical and thermal properties improve with the increase of carboxylic groups. The as-prepared SCPEN films show potential applications in electronic storage materials, which provide insights into the correlation of SCPEN electrical properties with its chemical structure. The structure–property relationship is established to broaden the application of functionalized PEN. Furthermore, SCPEN with rich polar groups may also be used as the polymer matrix to increase the interaction with the filler surface, ensuring a better dispersion of filler in the matrix. This provides a reference for the development of high dielectric materials.


2021 ◽  
pp. 095400832110440
Author(s):  
Mingyun Peng ◽  
Ke Li ◽  
Bingliang Huang ◽  
Jie Cheng

A series of three-phase composite films with different filler contents were prepared by in-situ polymerization. The composite films comprise polyimide (PI), poly (vinylidene fluoride) (PVDF), and titanium dioxide (TiO2). Compared with PI/TiO2 composite films, the PI/TiO2-PVDF composite films not only get a significant increase in dielectric constant, but also own better mechanical properties. Our results show that with the loading of 50wt% PVDF particles, the dielectric constant of PI/TiO2-PVDF composite films increased from 6.5 to 18.14 at 1 MHz and room temperature, while the tensile strength of PI/TiO2-PVDF composite films increased from 45 to 72 MPa. In addition, the films maintain a low loss tangent of about 0.02. PI/PVDF composite films were also prepared. It was found that dielectric constant of PI/PVDF composite was significantly lower than that of PI/TiO2-PVDF composite films when the loading of PVDF is 50wt%.


Sign in / Sign up

Export Citation Format

Share Document