Tribological behavior of an ultrahigh molecular weight polyethylene in lubricated environments

e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
O. K. Kahyaoglu ◽  
H Unal ◽  
A Mimaroglu ◽  
S.H. Yetgin

AbstractThe wear and friction performance of GUR 1020 grade ultrahigh molecular weight polyethylene (UHMWPE) polymer was studied in distilled water, HASS (Hank’s balanced salt solution) and several protein lubrication environments. Wear tests were carried out using polymer pin -on AISI 304L stainless steel disc apparatus. Tests conditions were room temperature, 40N, 80N and 120N applied loads and 0.5 m/s sliding speed. For the range of load and speed value of this work, the coefficient of friction and wear rate for UHMWPE polymer decreases with the increase in applied load values. The coefficient of friction is highest and the specific wear rate values is lowest under HASS +HA solution lubricant. The average specific wear rate values for UHMWPE polymer under distilled water and HASS+HA (Hank’s balanced salt solution with Hyaluronic acid) lubrication conditions are in the order of 9x10-15 m2/N and 3x10-15 m2/N respectively. The wear mechanism includes abrasion and adhesive processes.

1984 ◽  
Vol 18 (2) ◽  
pp. 207-224 ◽  
Author(s):  
Robert M. Rose ◽  
Michael D. Ries ◽  
Igor L. Paul ◽  
Aldo M. Crugnola ◽  
Edward Ellis

2017 ◽  
Vol 25 (3) ◽  
pp. 193-198 ◽  
Author(s):  
A. Madhanagopal ◽  
S. Gopalakannan

This study determines the friction and the wear properties of the unidirectional glass epoxy composite with Gr, SiC TiO2 powder by using pin on disk apparatus. This tribological data is obtained in dry sliding condition for a constant sliding time of 30 minutes. Test specimens are prepared using hand lay-up process and by varying the different (2, 5, 7) percentage each of graphite and SiC, TiO2 particles addition for the combination of fiber and matrix. The tests are performed by varying the operating parameters of contact pressure (p) and velocity (v). The composites (2% 5%, and 7%) are worn by dry sliding at the steel counter face under ambient conditions. The coefficient of friction reaches maximum of 0.78 at 2 kg load, 2 m/s velocity with testing time duration of 24 min. whereas 5%, 7% sample shows the coefficient of friction 0.28, 0.25 respectively. The specific wear rate value drops to 0.79 (mm3/N-m×10−6) at 2 kg load at 2 m/s velocity for the 5% specimen. The maximum reduction in the specific wear rate at 3 kg load, 1m/s velocity is 32.7 percentages, 5.63 percentages for the 5,7 percentage specimen compared to 2% specimen for the graphite and SiC, TiO2 particle filled composite specimen respectively. The SEM images are also taken to support the results.


Author(s):  
Kali Dass ◽  
SR Chauhan ◽  
Bharti Gaur

An experimental study has been carried out to investigate the mechanical and tribological characteristics of chopped carbon fiber (CCF) reinforced epoxy composites filled with nano-Al2O3 particulates, as a function of fiber and filler contents. The experiments were conducted using a pin-on-disc wear test apparatus under dry sliding conditions. The coefficient of friction and specific wear rate of these composites was determined as a function of applied normal load, sliding velocity, sliding distance, and reinforcement content. The tensile, flexural, and compression strengths of ortho cresol novalac epoxy and chopped carbon fiber (OCNE/CCF) filled composites are found to be within the ranges of 48–58.54 MPa, 115–156.56 MPa, and 48–61.15 MPa. Whereas the tensile, flexural, and compression strengths of OCNE/CCF/Al2O3-filled composites are found to be within the ranges of 96–110 MPa, 176–204.66 MPa, and 72–85.65 MPa, respectively. It has been observed that the coefficient of friction decreases and specific wear rate increases with increase in the applied normal loads. Further increases in the fiber (6 wt%) and particle (3 wt%) contents in the epoxy matrix resulted in a decrease of both the mechanical and tribological properties, but remains above that of the CCF reinforced epoxy composites. The worn surfaces of composites were examined with scanning electron microscopy equipped with energy dispersion X-ray analyzer and X-ray diffraction analysis technique to investigate the wear mechanisms.


2020 ◽  
Vol 170 ◽  
pp. 01025
Author(s):  
Tushar Gadekar ◽  
Dinesh Kamble

Friction and wear in dynamic parts is the primary reason for energy loss in gearbox lubrication system and this can be optimized by utilizing modified lubricant. The tribological nature of gearbox system is critically affected by factors such as type of lubricant, loading & speed etc. In latest years, multiple advanced oil and modern tribological techniques & instruments have been utilized to investigate behaviour of oil like pin on disc, Fourball tester etc. This paper presents comparative investigation of oil blended with additive for two different conditions using prediction model & RSM. The design of experimentations has been conducted by using response surface methodology. The value of inputs parameters such as concentration, load & sliding velocity ranges from 0.5 to 5 %, 60 to 100 N and 0.65 to 1.5 m/s, respectively are utilized to evaluate the outcomes of coefficient of friction and specific wear rate. At the end results from Prediction equations are compared with experimental literature based outcomes to signify the effect of parameters like blend %, load & Sliding speed. The Coefficient of friction model showed 47.57 % more closer outcomes as compared to the Specific wear rate model for specific variation of unknown parameters for pin on disc setup in oil.


Sign in / Sign up

Export Citation Format

Share Document