Study on the effects of nano-aluminum-oxide particulates on mechanical and tribological characteristics of chopped carbon fiber reinforced epoxy composites

Author(s):  
Kali Dass ◽  
SR Chauhan ◽  
Bharti Gaur

An experimental study has been carried out to investigate the mechanical and tribological characteristics of chopped carbon fiber (CCF) reinforced epoxy composites filled with nano-Al2O3 particulates, as a function of fiber and filler contents. The experiments were conducted using a pin-on-disc wear test apparatus under dry sliding conditions. The coefficient of friction and specific wear rate of these composites was determined as a function of applied normal load, sliding velocity, sliding distance, and reinforcement content. The tensile, flexural, and compression strengths of ortho cresol novalac epoxy and chopped carbon fiber (OCNE/CCF) filled composites are found to be within the ranges of 48–58.54 MPa, 115–156.56 MPa, and 48–61.15 MPa. Whereas the tensile, flexural, and compression strengths of OCNE/CCF/Al2O3-filled composites are found to be within the ranges of 96–110 MPa, 176–204.66 MPa, and 72–85.65 MPa, respectively. It has been observed that the coefficient of friction decreases and specific wear rate increases with increase in the applied normal loads. Further increases in the fiber (6 wt%) and particle (3 wt%) contents in the epoxy matrix resulted in a decrease of both the mechanical and tribological properties, but remains above that of the CCF reinforced epoxy composites. The worn surfaces of composites were examined with scanning electron microscopy equipped with energy dispersion X-ray analyzer and X-ray diffraction analysis technique to investigate the wear mechanisms.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


2017 ◽  
Vol 25 (3) ◽  
pp. 193-198 ◽  
Author(s):  
A. Madhanagopal ◽  
S. Gopalakannan

This study determines the friction and the wear properties of the unidirectional glass epoxy composite with Gr, SiC TiO2 powder by using pin on disk apparatus. This tribological data is obtained in dry sliding condition for a constant sliding time of 30 minutes. Test specimens are prepared using hand lay-up process and by varying the different (2, 5, 7) percentage each of graphite and SiC, TiO2 particles addition for the combination of fiber and matrix. The tests are performed by varying the operating parameters of contact pressure (p) and velocity (v). The composites (2% 5%, and 7%) are worn by dry sliding at the steel counter face under ambient conditions. The coefficient of friction reaches maximum of 0.78 at 2 kg load, 2 m/s velocity with testing time duration of 24 min. whereas 5%, 7% sample shows the coefficient of friction 0.28, 0.25 respectively. The specific wear rate value drops to 0.79 (mm3/N-m×10−6) at 2 kg load at 2 m/s velocity for the 5% specimen. The maximum reduction in the specific wear rate at 3 kg load, 1m/s velocity is 32.7 percentages, 5.63 percentages for the 5,7 percentage specimen compared to 2% specimen for the graphite and SiC, TiO2 particle filled composite specimen respectively. The SEM images are also taken to support the results.


2020 ◽  
Vol 170 ◽  
pp. 01025
Author(s):  
Tushar Gadekar ◽  
Dinesh Kamble

Friction and wear in dynamic parts is the primary reason for energy loss in gearbox lubrication system and this can be optimized by utilizing modified lubricant. The tribological nature of gearbox system is critically affected by factors such as type of lubricant, loading & speed etc. In latest years, multiple advanced oil and modern tribological techniques & instruments have been utilized to investigate behaviour of oil like pin on disc, Fourball tester etc. This paper presents comparative investigation of oil blended with additive for two different conditions using prediction model & RSM. The design of experimentations has been conducted by using response surface methodology. The value of inputs parameters such as concentration, load & sliding velocity ranges from 0.5 to 5 %, 60 to 100 N and 0.65 to 1.5 m/s, respectively are utilized to evaluate the outcomes of coefficient of friction and specific wear rate. At the end results from Prediction equations are compared with experimental literature based outcomes to signify the effect of parameters like blend %, load & Sliding speed. The Coefficient of friction model showed 47.57 % more closer outcomes as compared to the Specific wear rate model for specific variation of unknown parameters for pin on disc setup in oil.


Author(s):  
Palash Roy Choudhury ◽  
Korimilli Eswar Prasad ◽  
John K. Schueller ◽  
Abhijit Bhattacharyya

Tribological characteristics of boron modified as-cast Ti6Al4V alloys are not very well known, but these alloys enjoy improved as-cast mechanical properties and favourable manufacturing economy. Experimental results are reported here for the effects of sliding speed and normal load on the wear rate and the coefficient of friction in dry sliding of these alloys on hardened EN 31 steel. Alloys having 0%, 0.30%, and 0.55% boron by weight were tested. A full factorial experiment assessed the effects of boron content, speed, and load on wear and friction. Interactions between speed and load were found to be statistically significant in influencing the wear rate and the coefficient of friction. Regression models are developed to predict the wear rate and coefficient of friction responses. The developed contour plots can assist designers in choosing operating conditions when selecting these alloys even if the wear mechanisms are unknown. Evidence shows that the wear resistance of Ti6Al4V can be improved by boron addition, and wear regimes are sensitive to boron content.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
O. K. Kahyaoglu ◽  
H Unal ◽  
A Mimaroglu ◽  
S.H. Yetgin

AbstractThe wear and friction performance of GUR 1020 grade ultrahigh molecular weight polyethylene (UHMWPE) polymer was studied in distilled water, HASS (Hank’s balanced salt solution) and several protein lubrication environments. Wear tests were carried out using polymer pin -on AISI 304L stainless steel disc apparatus. Tests conditions were room temperature, 40N, 80N and 120N applied loads and 0.5 m/s sliding speed. For the range of load and speed value of this work, the coefficient of friction and wear rate for UHMWPE polymer decreases with the increase in applied load values. The coefficient of friction is highest and the specific wear rate values is lowest under HASS +HA solution lubricant. The average specific wear rate values for UHMWPE polymer under distilled water and HASS+HA (Hank’s balanced salt solution with Hyaluronic acid) lubrication conditions are in the order of 9x10-15 m2/N and 3x10-15 m2/N respectively. The wear mechanism includes abrasion and adhesive processes.


Tribology ◽  
2005 ◽  
Author(s):  
Abdulhaqq Q. Hamid ◽  
Sataish C. Jain ◽  
Prakriti K. Ghosh ◽  
Subrata Ray

Aluminum alloy-based cast in-situ composite has been synthesized by dispersion of externally added molybdenum trioxide particles (MoO3) in molten aluminum at the processing temperature of 850 °C. During processing, displacement reaction between molten aluminum and MoO3 particles, results in formation of alumina particles in-situ also releases molybdenum into molten aluminum. A part of this molybdenum forms solid -solution with aluminum and the remaining part reacts with aluminum to form intermetallic phase Mo(Al1−xFex)12 of different morphologies. Magnesium (Mg) is added to the melt in order to help wetting of alumina particles generated in-situ, by molten aluminum and help to retain these particles inside the melt. The mechanical properties (ultimate tensile stress, yield stress, percentage elongation and hardness) of the cast in-situ composite are relatively higher than those observed either in cast commercial aluminum or in cast Al-Mo alloys. The wear and friction of the resulting cast in-situ Al(Mg, Mo)Al2O3(MoO3) composites have been investigated using a pin-on-disc wear testing machine, at different normal loads of 9.8, 14.7, 19.6, 24.5, 29.4, 34.3 and 39.2 N and a constant sliding speed of 1.05 m/s, under dry sliding conditions. The results indicate that the cumulative volume loss and wear rate of cast in-situ composites are significantly lower than those observed either in cast commercial aluminum or in cast Al-Mo alloy, under similar load and sliding conditions. Beyond about 30-35 N loads, there appears to be a higher rate of increase in the wear rate in the cast in-situ composite as well as in cast commercial aluminum and cast Al-Mo alloy. For a given normal load, the coefficient of friction of cast in-situ composite is significantly lower than those observed either in cast commercial aluminum or cast Al-Mo alloy. The coefficient of friction of cast in-situ composite increases gradually with increasing normal load while those observed in cast commercial aluminum or cast Al-Mo alloy remain more or less the same. Beyond a critical normal load of about 30-35 N, the coefficient of friction decreases with increasing normal load in all the three materials.


2018 ◽  
Vol 778 ◽  
pp. 3-8 ◽  
Author(s):  
Sajawal Hussain ◽  
Muhammad Mansoor ◽  
Rehan Qayyume ◽  
Shaheed Khan

Al-Si eutectic system is a class [Mansoor, 2014 #24] of important cast alloys accounting for the majority of aluminum parts for different industrial applications. However, in unmodified form, it attributes to the lower mechanical strength, ductility and wear characteristics. In present work, Al-9 wt. %Si alloy was prepared in unmodified and modified form, where modification was carried out using mixtures of transitional earth halides. The modification process rectified the needle like silicon rich secondary phase into acicular shape, whose effect upon the tribological characteristic of the alloy were studied using pin-on-disc method. It was found that the coefficient of friction was reduced in modified alloy, besides lowering the wear rate. The main feature of wear scar was laminates. In case of modify alloy the laminates were of uniformly formed small sized, as opposed to non-uniform predominately large sized smooth segments with cracked edges. It was postulated that these non-uniform smooth laminates were formed due to smearing resulted in high coefficient of friction and wear rate. The altered tribological characteristics were attributed to the morphology of the silicon rich secondary phase i.e. the acicular shape.


2012 ◽  
Vol 585 ◽  
pp. 569-573 ◽  
Author(s):  
S.R. Chauhan ◽  
Sunil Thakur

In this paper the friction and wear characteristics of vinylester and vinylester composites have been investigated under dry sliding conditions for different applied normal load, sliding speed and sliding distance. The experiments have been carried on a pin on disc arrangement at normal room temperature conditions. The influence of friction and wear parameters like normal load, speed, sliding distance and percentage of filler content on the friction and wear rate has been investigated. In this study, a plan of experiments based on the techniques of Taguchi was performed to acquire data in a controlled way. An orthogonal array L27 (313) and Analysis of variance (ANOVA) were applied to investigate the influence of process parameters on the coefficient of friction and sliding wear behaviour of these composites. The Taguchi design of experiment approach eliminates the need for repeated experiments and thus saves time, material and cost. The results showed that with increase in the applied normal load and sliding speed the coefficient of friction and specific wear rate decreases under dry sliding conditions. It is also found that a thin film formed on the counterface seems to be effective in improving the tribological characteristics. The results showed that the inclusion of cenosphere as filler materials in vinylester composites will increase the wear resistance of the composite significantly.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1183
Author(s):  
Emad Omrani ◽  
Afsaneh Dorri Moghadam ◽  
Ashish K. Kasar ◽  
Pradeep Rohatgi ◽  
Pradeep L. Menezes

In the present work, the effect of graphite nanoplatelets (GNPs) on tribological properties of the aluminum (Al), and Al/alumina (Al2O3) composite are studied. GNPs are multilayer graphene sheets which were used as a solid lubricant material. Two sets of composites, Al/GNPs and Al/GNPs/Al2O3 with varying amounts of reinforcements, were synthesized by powder metallurgy that involves cold compaction followed by hot compaction. The hardness of the composites increased with the addition of GNPs and Al2O3. The Al/GNPs composite with 1 wt.% of GNPs (Al/1GNPs) showed a 20% increase in hardness whereas Al/GNPs/ Al2O3 composite with 1 wt.% GNPs and 2 wt.% Al2O3 (Al/1GNPs/2Al2O3) showed 27% increases in hardness compared to the pure Al. The coefficient of friction measured at 20 N was observed to be 22% and 53% lesser for Al/1GNPs and Al/1GNPs/2Al2O3, respectively, compared to corresponding alloys without graphene Al. The X-ray diffraction and scanning electron microscopy analysis revealed the presence of GNPs at the worn surface after the tribology tests. The wear rate was also reduced significantly. In comparison with pure Al, the Al/1GNPs and Al/1GNPs/2Al2O3 composites resulted in 5- and 20-times lesser wear rate, respectively. The addition of Al2O3 caused reduction in wear rate due to higher hardness and load carrying ability, whereas composites with more than 1 wt.% GNPs showed higher wear rate due to lower hardness and higher porosity. The Al/1GNPs/2Al2O3 composite exhibited the least coefficient of friction (0.2–0.25) and wear rate (1 × 10−6–4 × 10−6 mm3/N.m) compared to other GNPs and Al2O3 reinforced Al composites. The worn surfaces were further analyzed to understand the wear mechanism by Raman spectroscopy, transmission electron microscopy, and x-ray diffraction to detect the Al4C3 phase formation, chemical bonding, and defect formation in graphene.


Sign in / Sign up

Export Citation Format

Share Document