Inverse determination of thermal conductivity in lumber based on genetic algorithms

Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 235-241 ◽  
Author(s):  
Jingyao Zhao ◽  
Zongying Fu ◽  
Xiaoran Jia ◽  
Yingchun Cai

Abstract A 3D numerical solution of the heat conduction equation is proposed based on the finite volume method to describe the heating of wood, where the thermal conductivity (ThC) is variable, and the convective heat transfer coefficient is constant. ThC parameters were found through an optimization process based on genetic algorithms. The objective function between measured and simulated curves is determined, and parameters with greatest correspondence between measured and estimated values were obtained. As a result, a new equation for ThC is proposed, which depends on moisture and temperature. The proposed coefficient is validated by experiments, and a good agreement was found between experimental heating curves and those obtained by simulation by means of the new heat conduction equation.

Author(s):  
Jayangani I. Ranasinghe ◽  
Ericmoore Jossou ◽  
Linu Malakkal ◽  
Barbara Szpunar ◽  
Jerzy A. Szpunar

The understanding of the radial distribution of temperature in a fuel pellet, under normal operation and accident conditions, is important for a safe operation of a nuclear reactor. Therefore, in this study, we have solved the steady-state heat conduction equation, to analyze the temperature profiles of a 12 mm diameter cylindrical dispersed nuclear fuels of U3O8-Al, U3Si2-Al, and UN-Al operating at 597 °C. Moreover, we have also derived the thermal conductivity correlations as a function of temperature for U3Si2, uranium mononitride (UN), and Al. To evaluate the thermal conductivity correlations of U3Si2, UN, and Al, we have used density functional theory (DFT) as incorporated in the Quantum ESPRESSO (QE) along with other codes such as Phonopy, ShengBTE, EPW (electron-phonon coupling adopting Wannier functions), and BoltzTraP (Boltzmann transport properties). However, for U3O8, we utilized the thermal conductivity correlation proposed by Pillai et al. Furthermore, the effective thermal conductivity of dispersed fuels with 5, 10, 15, 30, and 50 vol %, respectively of dispersed fuel particle densities over the temperature range of 27–627 °C was evaluated by Bruggman model. Additionally, the temperature profiles and temperature gradient profiles of the dispersed fuels were evaluated by solving the steady-state heat conduction equation by using Maple code. This study not only predicts a reduction in the centerline temperature and temperature gradient in dispersed fuels but also reveals the maximum concentration of fissile material (U3O8, U3Si2, and UN) that can be incorporated in the Al matrix without the centerline melting. Furthermore, these predictions enable the experimental scientists in selecting an appropriate dispersion fuel with a lower risk of fuel melting and fuel cracking.


Author(s):  
Siddharth Saurav ◽  
Sandip Mazumder

Abstract The Fourier heat conduction and the hyperbolic heat conduction equations were solved numerically to simulate a frequency-domain thermoreflectance (FDTR) experimental setup. Numerical solutions enable use of realistic boundary conditions, such as convective cooling from the various surfaces of the substrate and transducer. The equations were solved in time domain and the phase lag between the temperature at the center of the transducer and the modulated pump laser signal were computed for a modulation frequency range of 200 kHz to 200 MHz. It was found that the numerical predictions fit the experimentally measured phase lag better than analytical frequency-domain solutions of the Fourier heat equation based on Hankel transforms. The effects of boundary conditions were investigated and it was found that if the substrate (computational domain) is sufficiently large, the far-field boundary conditions have no effect on the computed phase lag. The interface conductance between the transducer and the substrate was also treated as a parameter, and was found to have some effect on the predicted thermal conductivity, but only in certain regimes. The hyperbolic heat conduction equation yielded identical results as the Fourier heat conduction equation for the particular case studied. The thermal conductivity value (best fit) for the silicon substrate considered in this study was found to be 108 W/m/K, which is slightly different from previously reported values for the same experimental data.


2012 ◽  
Vol 195-196 ◽  
pp. 712-717
Author(s):  
Qiong Xue ◽  
Xiao Feng Xiao ◽  
Niang Zhi Fan

Diffusion only, two dimensional heat conduction has been described on partial differential equation. Based on Finite Volume Method, Discretized algebraic Equation of partial differential equation have been deduced. different coefficients and source terms have been discussed under different boundary conditions, which include prescribed heat flux, prescribed temperature, convection and insulated. Transient heat conduction analysises of infinite plate with uniform thickness and two dimensional rectangle region have been realized by programming using MATLAB. It is useful to make the heat conduction equation more understandable by its solution with graphical expression, feasibility and stability of numerical method have been demonstrated by running result.


2012 ◽  
Vol 510 ◽  
pp. 205-210
Author(s):  
Xiao Feng Xiao ◽  
Qiong Xue

Diffusion only, two dimensional heat conduction has been described on partial differential equation. Based on Finite Volume Method, Discretized algebraic Equation of partial differential equation have been deduced. different coefficients and source terms have been discussed under different boundary conditions, which include prescribed heat flux, prescribed temperature, convection and insulated.. Transient heat conduction analysis of infinite plate with uniform thickness and two dimensional rectangle region are realized by programming using MATLAB. It is useful to make the heat conduction equation more understandable by its solution with graphical expression, feasibility and stability of numerical method have been demonstrated by running result.


2011 ◽  
Vol 284-286 ◽  
pp. 2481-2484 ◽  
Author(s):  
Aniruddha Ghosh ◽  
Somnath Chattopadhyaya

This paper is focused on deriving an analytical solution to predict the transient temperature distribution on the plate during the process of Submerged Arc Welding (SAW). An analytical solution is derived from the transient three-dimensional heat conduction equation. The energy input that is applied on the plate is taken as the volume of heat lost from the electric arc. The electric arc is assumed to be a moving double-ellipsoidal heat source with a close proximity to a Gaussian distribution. It is observed that the predicted values are in good agreement with the experimental results. HAZ width calculation is also done with the help of the analytical solution of the transient-three dimensional heat conduction equation. Very good agreement between predicted and experimental values has been archived.


Sign in / Sign up

Export Citation Format

Share Document