Negative oxygen ion (NOI) production by enhanced photocatalytic TiO2/GO composites anchored on wooden substrates

Holzforschung ◽  
2019 ◽  
Vol 73 (4) ◽  
pp. 415-422
Author(s):  
Xiaoshuai Han ◽  
Zhenxing Wang ◽  
Qinqin Zhang ◽  
Yan Lv ◽  
Junwen Pu

Abstract Titanium dioxide (TiO2)/graphene oxide (GO)-treated wood was fabricated through a one-step hydrothermal-vacuum dipping technique, in which silica sol serves as a dispersant and linker owing to its good stability and high surface area, while the visible light activates TiO2/GO and negative oxygen ions (NOI) arise. This approach exhibits a super dye adsorption capacity and enhanced photocatalytic efficiency. In focus was the effect of the three-dimensional (3D) GO dopant on the NOI production, which was very high in this system. Namely, the concentration of NOI is up to 1710 ions cm−3 after 60 min visible light irradiation. Moreover, recycling experiments show that the properties of a TiO2/GO-wood system are stable. The TiO2/GO-treated wood is a healthy, environmentally friendly material which is promising for indoor decoration.

2003 ◽  
Vol 788 ◽  
Author(s):  
A. Akash ◽  
B. Nair ◽  
K. Minnick ◽  
M. Wilson ◽  
J. Hartvigsen

ABSTRACTA novel nano-ceramic material, called HSA-CERCANAM®, which has a very high surface area with a nanopore network has been developed. HSA-CERCANAM® can be casted in various shapes and forms resulting in a monolithic piece that has surface area as high as 80–100 m2/g. The surface area and the nanopore network of HSA-CERCANAM® remains stable at temperatures as high as 1000°C. Furthermore, the unique nature of HSA-CERCANAM® allows it to be casted on and around features, either sacrificial or permanent. Using sacrificial features, microchannels can be incorporated internally into the monolithic HSA-CERCANAM® piece in a simple, one-step process. Further, this monolithic ceramic component, which has an intrinsically high surface area and a nanopore network, can be infiltrated with a desired catalyst. This could offer clear technological advantages over currently available microreactors. The surface area, porosity, catalyst type and infiltration levels are some of the ways in which tailored microstructures can be realized in components such as mixers, heat exchangers, extractors, filters or reaction chambers thereby leading to highly efficient, multi-functional ceramic micro-devices.


2007 ◽  
Vol 19 (17) ◽  
pp. 4367-4372 ◽  
Author(s):  
Ajayan Vinu ◽  
Pavuluri Srinivasu ◽  
Dhanashri P. Sawant ◽  
Toshiyuki Mori ◽  
Katsuhiko Ariga ◽  
...  

2013 ◽  
Vol 662 ◽  
pp. 202-206
Author(s):  
Jia Feng Wu ◽  
Yu Mei Zhao ◽  
Peng Liang

A series of nano-sized iron oxide supported on 3D wormlike hierarchical mesoporous SiO2 catalysts were synthesized by one-step hydrothermal synthesis. The samples were characterized by XRD, N2 sorption, FT-IR, UV–Vis, TEM and ICP-AES. The catalysts were probed for the oxidation of phenol employing hydrogen peroxide. The results indicate that the materials exhibit high surface area and 3D wormlike hierarchical pore, iron ions exist as isolated framework species when the weight percentage content of iron is below 0.24 and nano-size iron oxide is dispersed in the surface (iron content above 0.24 wt%). Catalytic performance indicates that nano-size iron oxide supported on SiO2 is useful to enhance both the catalytic activity and the selectivity of target products compared with isolated iron species.


2020 ◽  
Vol 6 (40) ◽  
pp. eaba0931
Author(s):  
Wenyu Wang ◽  
Karim Ouaras ◽  
Alexandra L. Rutz ◽  
Xia Li ◽  
Magda Gerigk ◽  
...  

Scalability and device integration have been prevailing issues limiting our ability in harnessing the potential of small-diameter conducting fibers. We report inflight fiber printing (iFP), a one-step process that integrates conducting fiber production and fiber-to-circuit connection. Inorganic (silver) or organic {PEDOT:PSS [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate]} fibers with 1- to 3-μm diameters are fabricated, with the fiber arrays exhibiting more than 95% transmittance (350 to 750 nm). The high surface area–to–volume ratio, permissiveness, and transparency of the fiber arrays were exploited to construct sensing and optoelectronic architectures. We show the PEDOT:PSS fibers as a cell-interfaced impedimetric sensor, a three-dimensional (3D) moisture flow sensor, and noncontact, wearable/portable respiratory sensors. The capability to design suspended fibers, networks of homo cross-junctions and hetero cross-junctions, and coupling iFP fibers with 3D-printed parts paves the way to additive manufacturing of fiber-based 3D devices with multilatitude functions and superior spatiotemporal resolution, beyond conventional film-based device architectures.


2018 ◽  
Vol 6 (34) ◽  
pp. 16485-16494 ◽  
Author(s):  
Haiyong Yang ◽  
Yuming Zhou ◽  
Yanyun Wang ◽  
Saichun Hu ◽  
Beibei Wang ◽  
...  

Flower-like phosphorus-doped g-C3N4 with a high surface area was synthesized using cyanuric acid–melamine supramolecular precursors which were absorbed by phosphoric acid.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 40 ◽  
Author(s):  
Kang-Kai Liu ◽  
Biao Jin ◽  
Long-Yue Meng

In this study, three-dimensional glucose/graphene-based aerogels (G/GAs) were synthesized using the hydrothermal reduction and CO2 activation method. Graphene oxide (GO) was used as a matrix, and glucose was used as a binder for the orientation of the GO morphology in an aqueous media. We determined that G/GAs exhibited narrow mesopore size distribution, a high surface area (763 m2 g−1), and hierarchical macroporous and mesoporous structures. These features contributed to G/GAs being promising adsorbents for the removal of CO2 (76.5 mg g−1 at 298 K), CH4 (16.8 mg g−1 at 298 K), and H2 (12.1 mg g−1 at 77 K). G/GAs presented excellent electrochemical performance, featuring a high specific capacitance of 305.5 F g−1 at 1 A g−1, and good cyclic stability of 98.5% retention after 10,000 consecutive charge-discharge cycles at 10 A g−1. This study provided an efficient approach for preparing graphene aerogels exhibiting hierarchical porosity for gas adsorption and supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document