Wood grain angles variations in Eucalyptus and their relationships to physical-mechanical properties

Holzforschung ◽  
2020 ◽  
Vol 74 (12) ◽  
pp. 1089-1097
Author(s):  
José Clailson Franco Coelho ◽  
Graziela Baptista Vidaurre ◽  
João Gabriel Missia da Silva ◽  
Maria Naruna Felix de Almeida ◽  
Ramon Ferreira Oliveira ◽  
...  

AbstractThe relationship between grain angle and wood properties has not been focus of researches in wood industry. The aim of this study was to establish grain angle variations in commercial Eucalyptus logs and their effects on physical-mechanical wood properties. Wood maximum angular deviation (MAD) was correlated with density, volumetric shrinkage, compressive strength parallel to grain, flexural strength and stiffness as determined by bending and acoustic methods in wood of seven Eucalyptus grandis × Eucalyptus urophylla clones at 13 years old. The relationship between MAD at pith-bark and base-top positions and its effect on the physical and mechanical properties were evaluated. Amplitude of MAD values was small for the seven clones, and the mean was 6.2°. The grain deviation decreased by only 8% in base-top direction, and the correlations among MAD and three logs heights were small and negative (r = −0.13). MAD values presented an increasing trend of 33% in pith-bark direction, with a small positive correlation (r = 0.42). Basic density (BD) presented a significant correlation with the MAD (r = 26). There was no significant correlation between the MAD and volumetric shrinkage, mechanical properties and modulus of elasticity dynamic (determined by stress wave timer, ultrasound or transverse vibration).

2021 ◽  
Vol 10 (11) ◽  
pp. e421101119746
Author(s):  
Pedro Augusto Fonseca Lima ◽  
Cassiano Pacheco da Silva ◽  
Fernando Nunes Gouveia ◽  
Gabriela Bertoni Belini ◽  
Elias Ricardo Durango Padilla ◽  
...  

The use of Chromated Copper Borate (CCB) for wood treatment is known with several studies on a laboratory scale. However, there is a lack of field studies to analyze the effect of the CCB over time. This study aimed to evaluate the wood properties of Eucalyptus urophylla S.T. Blake x Eucalyptus grandis W. Mill ex Maiden (called E. urograndis), treated with CCB as well evaluate the leaching of chromium, copper and bore (Cr/Cu/B) in field test. The field experiment, with wood treated and untreated (no CCB application), was installed in 2016 and remained until 2018. Wood physico-mechanical properties were evaluated for each condition (treated and untreated) and at three different time: at 0, 1 and 2 years of field exposure. The elements (Cr/Cu/B) losses (leaching) were determined by the difference in the quantification of each element retained in the wood (retention), from year 0 (amount of original elements) in relation to years 1 and 2 of field exposure. The preservative treatment of E. urograndis wood with CCB was efficient to maintain its physical and mechanical properties (mass loss, basic density, rupture and elasticity modulus) during the 2 years of field exposure. The E. urograndis wood without CCB treatment showed reductions in the physical-mechanical properties, indicating their low natural durability. High leaching (close to 100%) for boron was observed. In addition, the total of CCB retention has not changed (statistically) after 2 years.


2018 ◽  
Vol 42 (2) ◽  
Author(s):  
Antonio José Vinha Zanuncio ◽  
Amélia Guimarães Carvalho ◽  
Angélica de Cassia Oliveira Carneiro ◽  
Mario Tomazello Filho ◽  
Paulina Valenzuela ◽  
...  

ABSTRACT Eucalyptus wood from adult trees is used for several purposes; however, the wood of younger trees has limited use. This study aims to characterize and propose uses of two-year-old eucalyptus wood. Six two-year-old Eucalyptus grandis × Eucalyptus urophylla clones have been selected and their anatomical, ultrastructural, physical and mechanical wood characteristics evaluated. The wood of Clone A shows more robust fibers with better microfibril arrangement, resulting in better mechanical properties, and therefore, a better performance for structural use. Clone F showed a low variation of wood basic density in the radial direction, facilitating its machinability, and with the Clone B, showed a lower anisotropy, and therefore, the wood is recommended for locations with high variations of humidity. The heterogeneity of the wood characteristics of the evaluated clones confirms the need for further studies, to choose those most adequate to each use.


2018 ◽  
Vol 42 (1) ◽  
Author(s):  
Graziela Baptista Vidaurre ◽  
Benedito Rocha Vital ◽  
Angélica de Cássia Oliveira ◽  
José Tarcísio da Silva Oliveira ◽  
Jordão Cabral Moulin ◽  
...  

ABSTRACT Growth in world demand for wood implies a search for new fast growing species with silvicultural potential, and in this scenario for native species such as Paricá . Thus, the objective of this study was determining the physical and mechanical wood properties of the Schizolobium amazonicum species (known as Paricá in Brazil). Trees were collected from commercial plantations located in the north of Brazil with ages of 5, 7, 9 and 11 years. Four logs from trees of each age in the longitudinal direction of the trees were obtained, and later a diametrical plank of each log was taken to manufacture the specimens which were used to evaluate some physical and mechanical properties of the wood. The basic density of Paricá was reduced in the basetop direction and no difference between the radial positions was observed, while the average basic density of this wood was characterized as low. The region close to the bark showed less longitudinal contraction and also greater homogeneity of this property along the trunk, while for tangential contraction the smallest variation was found in the region near the pith. Paricá wood contraction was characterized as low. Age influenced most of the mechanical properties, where logs from the base had the highest values of mechanical strength.


1975 ◽  
Vol 5 (3) ◽  
pp. 424-432 ◽  
Author(s):  
J. E. Nicholson ◽  
W. E. Hillis ◽  
N. Ditchburne

The relationship between level of longitudinal growth strain and stress, modulus of elasticity, basic density, volumetric shrinkage, fiber classification, and stem form was investigated with 10 Eucalyptusregnans regrowth trees. Close relationships were observed. It is suggested that variations in these properties within trees are closely controlled, possibly to enable optimum positioning of the tree crown in relation to its immediate environment. The concept of fiber structure varying as a response to environment is supported by the observed variation in wood properties within and between trees of this species. The often-reported association between eccentric radial growth and reaction wood was not substantiated in this study.The data indicate that if economically justifiable, it would be possible to segregate trees that are likely to contain material that is hard to season.


IAWA Journal ◽  
2014 ◽  
Vol 35 (2) ◽  
pp. 158-169 ◽  
Author(s):  
Zhao Rongjun ◽  
Yao Chunli ◽  
Cheng Xianbao ◽  
Lu Jianxiong ◽  
Fei Benhua ◽  
...  

The anatomical characteristics, chemical composition, and physical and mechanical properties of fast-growing Populus × euramericana cv. ‘74/76’ juvenile wood were investigated. Four- to five-year-old clonal plantation trees were harvested from two different experimental sites in the suburbs of Beijing. The Shunyi site had black alkali soil with a planting density of 4 × 6 m and the Miyun site had sandy loam soil with a planting density of 3 × 5 m. The test results showed that the poplar trees from the two sites were both fast growing, with poplar at Shunyi growing faster than at Miyun. There were no significant differences in wood properties between trees grown at the two sites. Fiber length at breast height varied from 872 to 1300 μm between growth rings, average fiber width varied from 21.0 to 25.5 μm and double wall thickness varied from 5.0 to 6.6 μm. Average cellulose, lignin and hemicellulose contents in the samples were 48.9%, 25.4%, and 18.8%, respectively. MFA was higher in the first two growth rings (20–25°), and then decreased rapidly to 12° close to the bark. The average air-dry density at breast height was 401 kg/m3 while the average MOE at breast height was 9.3 GPa. The trees showed large growth rates in both height and stem diameter during the growing season. However, wood properties of the juvenile poplar appeared to be similar to those of poplars with a slower growth rate.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1543
Author(s):  
Francisca Guadalupe Cabrera-Covarrubias ◽  
José Manuel Gómez-Soberón ◽  
Carlos Antonio Rosas-Casarez ◽  
Jorge Luis Almaral-Sánchez ◽  
Jesús Manuel Bernal-Camacho

The porosity of mortars with recycled ceramic aggregates (10, 20, 30, 50, and 100% as a replacement of natural aggregate) was evaluated and analyzed using three different techniques. The results of gas adsorption (N2), Scanning Electron Microscopy (SEM) image analysis and open porosity allowed establishing the relationship between the recycled aggregate content and the porosity of these mortars, as well as the relationship between porosity and the physical and mechanical properties of the mortars: absorption, density, compressive strength, modulus of elasticity, and drying shrinkage. Using the R2 coefficient and the equation typology as criteria, additional data such as Brunauer, Emmett, and Teller (BET) surface area (N2 adsorption) established significant correlations with the mentioned properties; with SEM image analysis, no explanatory relationships could be established; and with open porosity, revealing relationships were established (R2 > 0.9). With the three techniques, it was confirmed that the increase in porosity is related to the increase in the amount of ceramic aggregate; in particular with gas adsorption (N2) and open porosity. It was concluded that the open porosity technique can explain the behavior of these recycled mortars with more reliable data, in a simple and direct way, linked to its establishment with a more representative sample of the mortar matrix.


2017 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Futoshi Ishiguri ◽  
Kazuko Makino ◽  
Imam Wahyudi ◽  
Jun Tanabe ◽  
Yuya Takashima ◽  
...  

The present study clarified the relationship between the growth and wood properties of 54-year-old Agathis sp. trees planted in Indonesia. Stem diameter, pilodyn penetration, and stress-wave velocity (SWV) were measured for all trees (35 trees) in a plot (30  30 m) located almost at the center of a stand. Based on the mean stem diameter, 10 standard trees in a plot were selected for measuring the basic density (BD) and compressive strength parallel to grain (CS). Core samples (5 mm in diameter) were collected from the 10 selected trees to determine BD and CS. The mean stem diameter, pilodyn penetration and SWV in the plot were 40.2  11.3 cm, 23.4  2.1 cm, and 3.85  0.43 km/s, respectively. No  significant correlation coefficeint (r = -0.327, no significance at 5% level) was obtained between stem diameter and SWV. The mean BD and CS in the 10 trees were 0.42  0.03 g/cm3  and 28.1  2.7 MPa, respectively. A significant positive  correlation was observed between BD and CS. Analysis of variance (ANOVA) revealed a significant difference between BD and CS values of the 10 trees, indicating that wood properties may differ among trees with the same standard growth in a stand. From these results, we concluded that wood quality improvement in this species could be achieved by selecting  trees with high density and strength in tree breeding programs.


IAWA Journal ◽  
2006 ◽  
Vol 27 (3) ◽  
pp. 243-254 ◽  
Author(s):  
Teresa Quilhó ◽  
Isabel Miranda ◽  
Helena Pereira

Within-tree variations in fibre length, width, wall thickness and wood basic density of Eucalyptus grandis × E. urophylla (urograndis) were studied in five 6.8-yr-old seedling trees and five 5.6-yr-old trees from one clone from Brazil. Samples were taken at 5%, 25%, 35%, 55%, 65% and 90% of stem height and five radial positions (10%, 30%, 50%, 70% and 90% of radius). The tree average fibre length, width and wall thickness were in seed and clone trees: 0.955 mm and 1.064 mm, 18 μm and 20 μm, 3.6 μm and 4.4 μm respectively. The axial variation of fibre dimensions was very low, while there was a consistent but small increasing trend from pith to periphery. The basic density ranged from 397–464 kg/m3 to 486–495 kg/m3 respectively in seedling and clone trees with a low variation along the stem. In comparison with other eucalypt pulpwood, e.g. E. globulus, the urograndis hybrid showed similar fibre dimensions and lower basic density. Overall the within-tree variation of these wood properties was low and age had a small impact on the variation of density and fibre dimensions.


2017 ◽  
Vol 52 (1) ◽  
pp. 49-52
Author(s):  
Elias ◽  
AK Das ◽  
MM Rahman ◽  
MA Islam

This research intends to explore the mechanical and physical properties of waterlogged rain tree (Samanea saman). The variation of mechanical and physical wood properties grown in waterlogged and non-waterlogged area were studied. Four trees of the species were selected from two areas. Important mechanical and physical properties were examined for the wood of two types of trees Oven dry density for the wood of waterlogged tree was 420 kg/m3 whether it was 550 kg/m3 for the wood of non-waterlogged tree. The MOR of wood of waterlogged tree was 58.2 N/mm2 and wood of non-waterlogged tree produced 78.1 N/mm2. The MOE of the wood of waterlogged tree and non-waterlogged tree were 1478 and 4876 N/mm2. The physical and mechanical properties were lower for the wood of waterlogged tree. Such findings may in proper uses of the species.Bangladesh J. Sci. Ind. Res. 52(1), 49-52, 2017


Sign in / Sign up

Export Citation Format

Share Document