Co-curing of epoxy resins with aminated lignins: insights into the role of lignin homo crosslinking during lignin amination on the elastic properties

Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Marcus W. Ott ◽  
Christian Dietz ◽  
Simon Trosien ◽  
Sabrina Mehlhase ◽  
Martin J. Bitsch ◽  
...  

AbstractTo improve the reactivity of lignin for incorporation into high value polymers, the introduction of amines via Mannich reaction is a commonly used strategy. During this functionalization reaction, intra- as well as intermolecular lignin–lignin crosslinking occurs, which can vastly change the elastic properties of the lignin, and therefore, the properties of the resulting polymer. Therefore, the molecular structure of the amine that is used for such a lignin functionalization may be of great importance. However, the relationship between the molecular structure of the amine and the elastic properties of the lignin-based polymer that is generated thereof, has not been fully understood. Herein, this relationship was investigated in detail and it was observed that the molecular flexibility of the amines plays a predominant role: The use of more flexible amines results in an increase in elasticity and the use of less flexible amines yields more rigid resin material. In addition to the macroscopic 3-point bending flexural tests, the elastic modules of the resins were determined on the nanometer scale by using atomic force microscopy (AFM) in the PeakForce tapping modus. Thus, it could be demonstrated that the intrinsic elasticities of the lignin domains are the main reason for the observed tendency.

2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Antonietta Pepe ◽  
Florian Delaunay ◽  
Angelo Bracalello ◽  
Brigida Bochicchio

The role of polyphenols in the prevention of degenerative diseases is emerging in the last years. In this report, we will investigate in vitro the inhibitory effect of resveratrol on elastin amyloidogenesis. The effect of resveratrol on molecular structure was investigated by circular dichroism spectroscopy, while the inhibitory effect on self-assembly was evaluated by turbidimetry as a function of temperature and by atomic force microscopy.


Wear ◽  
2019 ◽  
Vol 418-419 ◽  
pp. 151-159 ◽  
Author(s):  
Juan F. Gonzalez-Martinez ◽  
Erum Kakar ◽  
Stefan Erkselius ◽  
Nicola Rehnberg ◽  
Javier Sotres

2020 ◽  
Vol 49 (34) ◽  
pp. 11859-11877 ◽  
Author(s):  
Ali Samie ◽  
Alireza Salimi ◽  
Jered C. Garrison

The coordination sphere can be influenced by many factors of inorganic and organic units. Despite the predominant role of inorganic unit in coordination sphere determination, organic unit can change it via one major or cooperativity of minor effects.


Nanoscale ◽  
2017 ◽  
Vol 9 (36) ◽  
pp. 13707-13716 ◽  
Author(s):  
Anna D. Protopopova ◽  
Rustem I. Litvinov ◽  
Dennis K. Galanakis ◽  
Chandrasekaran Nagaswami ◽  
Nikolay A. Barinov ◽  
...  

High-resolution atomic force microscopy imaging reveals the role of fibrinogen αC regions in the early stages of fibrin self-assembly.


2018 ◽  
Vol 2 (2) ◽  
pp. 14-17
Author(s):  
Zhuola Zhuola ◽  
Steve Barrett ◽  
Yalda Ashraf Kharaz ◽  
Riaz Akhtar

The mechanical properties of ocular tissues, such as the sclera, have a major impact on healthy eye function, and are governed by the properties and composition of the microstructural components. For example, biomechanical degradation associated with myopia occurs alongside a reduction of proteoglycans (PGs). In this study, the role of PG degradation in the nanomechanical properties of the porcine sclera is explored. In-vitro enzymatic degradation of PGs was conducted with α-amylase and chondroitinase ABC enzymes. Collagen fibril morphology and nanomechanical stiffness were measured with atomic force microscopy (AFM). The elastic modulus of the tissue was reduced in all enzyme-treated samples relative to controls. In addition, collagen fibril organization was disrupted by PG depletion. Our data demonstrate that PGs play an important role in determining not only the mechanical properties at these length scales, but also collagen fibril arrangement.


2008 ◽  
Vol 87 (10) ◽  
pp. 980-983 ◽  
Author(s):  
R.M. Gaikwad ◽  
I. Sokolov

Although silica particles have been used for tooth polishing, polishing with nanosized particles has not been reported. Here we hypothesize that such polishing may protect tooth surfaces against the damage caused by cariogenic bacteria, because the bacteria can be easily removed from such polished surfaces. This was tested on human teeth ex vivo. The roughness of the polished surfaces was measured with atomic force microscopy (AFM). A considerably lower nanometer-scale roughness was obtained when silica nanoparticles were used to polish the tooth surfaces, as compared with conventional polishing pastes. Bacterial attachment to the dental surfaces was studied for Streptococcus mutans, the most abundant cariogenic bacteria. We demonstrated that it is easier to remove bacteria from areas polished with silica nanoparticles. The results demonstrate the advantage of using silica nanoparticles as abrasives for tooth polishing.


Sign in / Sign up

Export Citation Format

Share Document