High-Temperature Oxidation Behavior of Cu-Si-Y Alloys

2013 ◽  
Vol 32 (4) ◽  
pp. 397-403
Author(s):  
Qun Liu ◽  
Guangyan Fu ◽  
Yong Su ◽  
Zhigang Zhang ◽  
Qi Xiong

AbstractThe effect of rare-earth element Y on high-temperature oxidation behavior of Cu-Si alloys at 973 and 1073 K in 0.1 MPa flowing pure O2 has been investigated. Results show at the two temperatures the mass gain of the alloys with different compositions follows the following sequence, Cu-3Si-1.0Y > Cu-3Si-0Y > Cu-3Si-0.5Y alloy. As the Y content increases, the grain size of the alloys decreases, which accelerates the diffusion rate of the alloying elements in the alloys and oxygen under the experimental conditions, increases the ratio of short-path diffusion, and promotes the formation of SiO2 and Y2O3. The three alloys do not form continuous oxide scales of SiO2 or Y2O3, but their rapid formation and dispersed distribution due to the grain-size reduction may also hinder the diffusion of alloying elements and oxygen, which is beneficial to improve the oxidation resistance of the Y-containing alloys. Thereby, the Cu-3Si-0.5Y alloy has good oxidation resistance. The Cu-3Si-1.0Y alloy exhibits largest mass gain among the three alloys, which is due to the fact that in the alloy with higher Y contend and finer grain size, more amount of Y2O3 is more quickly formed, whose mass occupy a more proportion in the whole mass gain of the alloy.

2016 ◽  
Vol 23 (05) ◽  
pp. 1650031
Author(s):  
JINGJIE DAI ◽  
HUIJUN YU ◽  
JIYUN ZHU ◽  
FEI WENG ◽  
CHUANZHONG CHEN

Ti–Al alloyed coating reinforced by nitrides was fabricated by laser surface alloying technique to improve mechanical properties and high temperature oxidation resistance of Ti–6Al–4V titanium alloy. Microstructures, mechanical properties and high temperature oxidation behavior of the alloyed coating were analyzed. The results show that the alloyed coating consisted of Ti3Al, TiAl2, TiN and Ti2AlN phases. Nitrides with different morphologies were dispersed in the alloyed coating. The maximum microhardness of the alloyed coating was 906[Formula: see text]HV. The friction coefficients of the alloyed coating at room temperature and high temperature were both one-fourth of the substrate. Mass gain of the alloyed coating oxidized at 800[Formula: see text]C for 1000[Formula: see text]h in static air was [Formula: see text][Formula: see text]mg/mm2, which was 1/35th of the substrate. No obvious spallation was observed for the alloyed coating after oxidation. The alloyed coating exhibited excellent mechanical properties and long-term high temperature oxidation resistance, which improved surface properties of Ti–6Al–4V titanium alloy significantly.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4166
Author(s):  
Wenbin Ma ◽  
Hongyun Luo ◽  
Xiaoguang Yang

In the present study, surface treatment techniques such as room temperature machining (RTM) and low temperature burnishing (LTB) processing have been used to improve the microstructure of GH738 superalloy. Nano-grains and nano-twins are obtained on the top surface of RTM and LTB specimens. It is found that although the grain size of RTM and LTB specimens is almost the same, different types of nano-twins have been produced. Moreover, the effect of RTM and LTB processing on high temperature oxidation behavior of nickel-based superalloy GH738 at 700 °C is investigated. The result shows that LTB specimen has the best high temperature oxidation resistance owing to the formation of nano-grains and higher twins density, which induce to form a continuous protective Al2O3 layer at the interface between outer oxide layer and matrix. It is observed that this layer inhibits the inward diffusion of O and outward diffusion of Ti and significantly improves oxidation resistance of LTB specimen. Furthermore, the effects of nano-grains and crystal defects on the diffusion mechanism of elements are clarified during the high temperature oxidation test.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 668 ◽  
Author(s):  
Mihaela Raluca Condruz ◽  
Gheorghe Matache ◽  
Alexandru Paraschiv ◽  
Teodor Badea ◽  
Viorel Badilita

The high-temperature oxidation behavior of selective laser melting (SLM) manufactured IN 625 was studied over 96 h of exposure at 900 °C and 1050 °C in air. An extensive analysis was performed to characterize the oxide scale formed and its evolution during the 96 h, including mass gain analysis, EDS, XRD, and morphological analysis of the oxide scale. The mass gain rate of the bare material increases rapidly during the first 8 h of temperature holding and diminishes at higher holding periods for both oxidation temperatures. High-temperature exposure for short periods (24 h) follows a parabolic law and promotes the precipitation of δ phase, Ni-rich intermetallics, and carbides. Within the first 24 h of exposure at 900 °C, a Cr2O3 and a (Ni, Fe)Cr2O4 spinel scale were formed, while at a higher temperature, a more complex oxide was registered, consisting of (Ni, Fe)Cr2O4, Cr2O3, and rutile-type oxides. Prolonged exposure of IN 625 at 900 °C induces the preservation of the Cr2O3 scale and the dissolution of carbides. Other phases and intermetallics, such as γ, δ phases, and MoNi4 are still present. The exposure for 96 h at 1050 °C led to the dissolution of all intermetallics, while the same complex oxide scale was formed.


2014 ◽  
Vol 33 (3) ◽  
pp. 287-292
Author(s):  
Yong Su ◽  
Meng Desong ◽  
Qun Liu ◽  
Guangyan Fu ◽  
Jingdong Wu ◽  
...  

AbstractThe high-temperature oxidation behavior of Fe-Si-Y alloys has been studied at 1173 and 1273 K in 0.1 MPa flowing pure O2. Results show that as the content of rare-earth yttrium raises, the grain size of Fe-Si-Y alloys decreases obviously, which increases grain boundaries in the alloys. The grain size of the oxides formed on the grain-fined alloys is also decreased. These enhance the diffusion rate of the alloying elements through the alloy matrix and oxide scales, and promotes the formation of SiO2 and Y2O3. However, a single and continuous SiO2 or Y2O3 scale still does not form on yttrium-containing alloys when being oxidized at 1173 or 1273 K, but their rapid formation and partial lateral connection due to the grain refinement can restrain the element diffusion in the alloys to some extents, and thus the oxidation resistance of the alloys is improved. The mechanism related with the effect of the grain refinement resulting from the addition of rare-earth yttrium on high-temperature oxidation behavior of Fe-Si alloys is also discussed.


2006 ◽  
Vol 510-511 ◽  
pp. 414-417
Author(s):  
Dong Bok Lee ◽  
Y.A. Shapovalov

The high-temperature oxidation behavior of WC-ZrN superhard nanocomposite film was studied in air between 500 and 700oC. The WC-ZrN film displayed poor high-temperature oxidation resistance, because of the formation of the nonprotective W-oxide scale and the less-protective, nonstoichiometric ZrO2-x oxide scale. The scale was prone to cracking and spallation. During oxidation, C and N escaped from the film into the air, while oxygen from the air diffused into the film.


2005 ◽  
Vol 8 (4) ◽  
pp. 371-375 ◽  
Author(s):  
Vicente Braz Trindade ◽  
Ulrich Krupp ◽  
Behzad Zandi Hanjari ◽  
Songlan Yang ◽  
Hans-Jürgen Christ

Sign in / Sign up

Export Citation Format

Share Document