Effect of temperature on matrix multicracking evolution of C/SiC fiber-reinforced ceramic-matrix composites

2020 ◽  
Vol 39 (1) ◽  
pp. 189-199
Author(s):  
Longbiao Li

AbstractIn this paper, the temperature-dependent matrix multicracking evolution of carbon-fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) is investigated. The temperature-dependent composite microstress field is obtained by combining the shear-lag model and temperature-dependent material properties and damage models. The critical matrix strain energy criterion assumes that the strain energy in the matrix has a critical value. With increasing applied stress, when the matrix strain energy is higher than the critical value, more matrix cracks and interface debonding occur to dissipate the additional energy. Based on the composite damage state, the temperature-dependent matrix strain energy and its critical value are obtained. The relationships among applied stress, matrix cracking state, interface damage state, and environmental temperature are established. The effects of interfacial properties, material properties, and environmental temperature on temperature-dependent matrix multiple fracture evolution of C/SiC composites are analyzed. The experimental evolution of matrix multiple fracture and fraction of the interface debonding of C/SiC composites at elevated temperatures are predicted. When the interface shear stress increases, the debonding resistance at the interface increases, leading to the decrease of the debonding fraction at the interface, and the stress transfer capacity between the fiber and the matrix increases, leading to the higher first matrix cracking stress, saturation matrix cracking stress, and saturation matrix cracking density.

2020 ◽  
Vol 39 (1) ◽  
pp. 209-218 ◽  
Author(s):  
Longbiao Li

AbstractIn this paper, the temperature-dependent proportional limit stress (PLS) of SiC/SiC fiber-reinforced ceramic-matrix composites (CMCs) is investigated using the micromechanical approach. The PLS of SiC/SiC is predicted using an energy balance approach considering the effect of environment temperature. The relation between the environment temperature, PLS, and composite damage state is established. The effects of the fiber volume, interface properties, and matrix properties on the temperature-dependent PLS and composite damage state of SiC/SiC composite are analyzed. The experimental PLS and interface debonding length of 2D SiC/SiC composites with the PyC and BN interphase at elevated temperatures are predicted. The temperature-dependent PLS of SiC/SiC composite increases with the fiber volume, interface shear stress and interface debonding energy, and the matrix fracture energy and decreases with the interface frictional coefficient at the same temperature.


2019 ◽  
Vol 90 (7-8) ◽  
pp. 909-924 ◽  
Author(s):  
Longbiao Li

In this paper, the stress-dependent matrix multiple fracture in silicon carbide fiber-reinforced ceramic-matrix composites with different fiber preforms is investigated. The critical matrix strain energy criterion is used to determine the matrix multiple fracture considering the interface debonding. The effects of the fiber radius, fiber elastic modulus, matrix elastic modulus, fiber volume, interface shear stress, and interface debonded energy on the matrix multiple fracture and the interface debonding are analyzed. The experimental matrix multiple cracking and interface debonding of minicomposite, unidirectional, and two-dimensional woven SiC/SiC composites with different fiber volumes and interphases are predicted. The matrix cracking density increases with the increasing of the fiber volume, fiber elastic modulus, interface shear stress, and interface debonded energy, and the decreasing of the fiber radius and matrix elastic modulus.


2018 ◽  
Vol 740 ◽  
pp. 987-996 ◽  
Author(s):  
Yong Deng ◽  
Weiguo Li ◽  
Jiaxing Shao ◽  
Xuyao Zhang ◽  
Haibo Kou ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1633 ◽  
Author(s):  
Longbiao Li

In this paper, the temperature-dependent vibration damping in C/SiC fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms under different vibration frequencies is investigated. A micromechanical temperature-dependent vibration damping model is developed to establish the relationship between composite damping, material properties, internal damage mechanisms, and temperature. The effects of fiber volume, matrix crack spacing, and interface properties on temperature-dependent composite vibration damping of CMCs and interface damage are analyzed. The experimental temperature-dependent composite damping of 2D and 3D C/SiC composites is predicted for different loading frequencies. The damping of the C/SiC composite increases with temperature to the peak value and then decreases with temperature. When the vibration frequency increases from f = 1 to 10 Hz, the peak value of composite damping and corresponding temperature both decrease due to the decrease of interface debonding and slip range, and the damping of 2D C/SiC is much higher than that of 3D C/SiC at temperature range from room temperature to 400 °C. When the fiber volume and interface debonding energy increase, the peak value of composite damping and the corresponding temperature decreases, mainly attributed to the decrease of interface debonding and slip range.


MRS Bulletin ◽  
1991 ◽  
Vol 16 (4) ◽  
pp. 32-38 ◽  
Author(s):  
James A. Cornie ◽  
Ali S. Argon ◽  
Vijay Gupta

The key to controlling and predicting the properties of metal matrix composites lies in understanding and controlling the interface. When properly designed, the interface between reinforcing fibers and the matrix or protective coating can act as a mechanical fuse through a controlled delamination mechanism.Controlled delamination, in effect, results in the decoupling of fibers from early damage due to stress concentrations in the vicinity. The delamination event must precede the crack bridging and frictional pull-out mechanisms that have been so effectively demonstrated in ceramic matrix composites. The delamination event, therefore, is the necessary precondition, and so analysis of composite toughening must start with a definition of the conditions for interface debonding.This decoupling can be expressed in terms of cohesive strength of the interface, shear strength of the interface, and fiber fracture stress. In a related but alternative manner, debonding can be expressed in terms of the intrinsic work of fracture of the interface as compared to the transverse work of fracture of the fiber.


2020 ◽  
Author(s):  
Xiaowu Chen ◽  
Guofeng Cheng ◽  
Junmin Zhang ◽  
Feiyu Guo ◽  
Haijun Zhou ◽  
...  

Abstract Residual stress originated from thermal expansion mismatch determines the mechanical properties of ceramic matrix composites (CMCs). Here, continuous SiC fiber reinforced SiC matrix (SiCf/SiC) composites were fabricated by nano-infiltration and transient eutectic-phase (NITE) method, and variation of residual stress in the constituent phases was investigated using high-temperature Raman spectrometer. With temperature increasing from room temperature to 1400°C, residual stresses of the matrix and the fiber decrease from 1.29 GPa to 0.62 GPa and from 0.84 GPa to 0.55 GPa in compression respectively, while that of the interphase decreases from 0.16 GPa to 0.10 GPa in tension. The variation of residual stress shows little effect in the tensile strength of the composites, while causes a slight decrease in the tensile strain. Suppression of fiber/matrix debonding and fiber pulling-out caused by the residual stress reduction in the interphase is responsible for the decreasing tensile strain. This work can open up new alternatives for residual stress analysis in CMCs.


Author(s):  
Vijay V. Pujar ◽  
Gregory N. Morscher

SiC-SiC ceramic matrix composites (CMCs) manufactured by the melt-infiltration (MI) process are considered leading candidates for hot-section turbine engine components. MI composites consisting of different commercially available SiC fibers were fabricated and their room temperature and elevated temperature performance was evaluated. In this paper, results on the performance of composites under tensile creep conditions and the properties of these materials retained after creep are discussed. Specimens were subjected to 100-h creep tests at different stress levels. For samples that did not rupture during creep, retained tensile properties were measured after creep and compared to those on the as-produced samples. Interestingly, the after-creep specimens show higher 0.005% offset stresses (or matrix cracking strengths) relative to those in the as-produced materials, which is attributed to redistribution of stresses among the constituents during the tensile creep test. That is, the results show that the offset stresses in these materials can actually improve with use under tensile creep conditions, which is a desirable attribute for components of these materials for turbine engines.


2010 ◽  
Vol 73 ◽  
pp. 65-71 ◽  
Author(s):  
Jalal El Yagoubi ◽  
Jacques Lamon ◽  
Jean Christophe Batsale

Ceramic matrix composites (CMC) are very attractive materials for structural applications at high temperatures. Not only must CMC be damage tolerant, but they must also allow thermal management. For this purpose heat transfers must be controlled even in the presence of damage. Damage consists in multiple cracks that form in the matrix and ultimately in the fibers, when the stresses exceed the proportional limit. Therefore the thermal conductivity dependence on applied load is a factor of primary importance for the design of CMC components. This original approach combines a model of matrix cracking with a model of heat transfer through an elementary cracked volume element containing matrix crack and an interfacial crack. It was applied to 1D composites subject to tensile ant thermal loading parallel to fiber direction in a previous paper. The present paper compares predictions to experimental results.


2021 ◽  
Vol 5 (7) ◽  
pp. 187
Author(s):  
Longbiao Li

In this paper, micromechanical constitutive models are developed to predict the tensile and fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs) considering matrix fragmentation and closure. Damage models of matrix fragmentation, interface debonding, and fiber’s failure are considered in the micromechanical analysis of tensile response, and the matrix fragmentation closure, interface debonding and repeated sliding are considered in the hysteresis response. Relationships between the matrix fragmentation and closure, tensile and fatigue response, and interface debonding and fiber’s failure are established. Experimental matrix fragmentation density, tensile curves, and fatigue hysteresis loops of mini, unidirectional, cross-ply, and 2D plain-woven SiC/SiC composites are predicted using the developed constitutive models. Matrix fragmentation density changes with increasing or decreasing applied stress, which affects the nonlinear strain of SiC/SiC composite under tensile loading, and the interface debonding and sliding range of SiC/SiC composite under fatigue loading.


2010 ◽  
Vol 45 (9) ◽  
pp. 989-1006 ◽  
Author(s):  
Longbiao Li ◽  
Yingdong Song

An approach to estimate fiber/matrix interface frictional coefficient of ceramic matrix composites under fatigue loading is developed by means of hysteresis loops. The Coulomb friction law is adopted to describe the interface shear stress in the debonded region. The matrix crack space and interface debonded length are obtained by matrix statistical cracking model and fracture mechanics interface debonding criterion. The hysteresis loops of four different cases are derived based on the damage mechanisms of fiber sliding relative to matrix in the debonded region during unloading and subsequent reloading. The hysteresis loss energy corresponding to different cycle is formulated in terms of interface frictional coefficient. By comparing the experimental hysteresis loss energy with computational values, the interface frictional coefficient of three different ceramic matrix composites under fatigue loading is derived.


Sign in / Sign up

Export Citation Format

Share Document