Flow Modeling of Well Test Analysis for a Multiple-fractured Horizontal Well in Triple Media Carbonate Reservoir

Author(s):  
Yong Wang ◽  
Xiangyi Yi

AbstractCarbonate reservoir is one kinds of important reservoir in the world. Because of the characteristics of carbonate reservoir, horizontal well, and acid fracturing became a key technology for efficiently developing carbonate reservoir. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. A coupling mathematical model for a fractured horizontal well in triple media carbonate reservoir with three kinds of reservoir outer boundaries by conceptualizing vugs as spherical shapes is presented in this article, in which the infinite conductivity of the acid fractures is taken into account. A semi-analytical solution is obtained in the Laplace domain by using source function theory, Laplace transformation, discretization of fracture, and superposition principle. Analysis of transient pressure responses indicates that several characteristic flow periods of fractured horizontal wells in triple media carbonate reservoir can be identified. Parametric analysis shows that fracture half-length, fracture number, fracture spacing, conditions of reservoir outer boundary, and so on can significantly influence the transient pressure responses of fractured horizontal wells in triple media carbonate reservoir. The model presented in this article can be applied to obtain important parameters pertinent to reservoir or fracture by type curve matching, and it can also provide useful information for optimizing fracture parameters.

2001 ◽  
Vol 4 (04) ◽  
pp. 260-269 ◽  
Author(s):  
Erdal Ozkan

Summary Most of the conventional horizontal-well transient-response models were developed during the 1980's. These models visualized horizontal wells as vertical wells rotated 90°. In the beginning of the 1990's, it was realized that horizontal wells deserve genuine models and concepts. Wellbore conductivity, nonuniform skin effect, selective completion, and multiple laterals are a few of the new concepts. Although well-established analysis procedures are yet to be developed, some contemporary horizontal-well models are now available. The contemporary models, however, are generally sophisticated. The basic objective of this paper is to answer two important questions:When should we use the contemporary models? andHow much error do we make by using the conventional models? This objective is accomplished by considering examples and comparing the results of the contemporary and conventional approaches. Introduction Since the early 1980's, horizontal wells have been extremely popular in the oil industry and have gained an impeccable standing among the conventional well completions. The rapid increase in the applications of horizontal-well technology brought an impetuous development of the procedures to evaluate the performances of horizontal wells. These procedures, however, used the vertical-well concepts almost indiscriminately to analyze the horizontal-well transient-pressure responses.1–14 Among these concepts were 1) the assumptions of a line-source well and an infinite-conductivity wellbore, 2) a single lateral withdrawing fluids along its entire length, and 3) a skin region that is uniformly distributed along the well. It should be realized that for the lengths, production rates, and configurations of horizontal wells drilled in the 1980's, these concepts were usually justifiable. The increased lengths of horizontal wells, high production rates, sectional and multilateral completions, and the vast variety of other new applications toward the end of the 1980's made us question the validity of the horizontal-well models and the well-test concepts adopted from vertical wells. The interest in improved horizontal-well models also flourished on the grounds of high productivities of horizontal wells. It was realized that, in many cases, a few percent of the production rate of a reasonably long horizontal well could amount to the cumulative production rate of a few vertical wells. In addition, the productivity-reducing effects were additive; that is, a slight reduction in the productivity here and there could add up to a sizeable loss of the well's production capacity. Furthermore, the low oil prices also created an economic environment where the marginal gains and losses in the productivity may decisively affect the economics of many projects. In the beginning of the 1990's, a new wave of developing horizontal-well solutions under more realistic conditions gained impetus.15–25 As a result, some contemporary models are available today for those who want to challenge the limitations of the conventional horizontal-well models. Unfortunately, the rigor is accomplished at the expense of complexity. Furthermore, even when a rigorous model is available, well-established analysis procedures are usually yet to be developed. This paper presents a critique of the conventional and contemporary horizontal well-test-analysis procedures. The main objective of this assessment is to answer the two fundamental questions horizontal-well-test analysts are currently facing:When is the use of contemporary analysis methods essential? andIf the conventional analysis methods are used, what are the margins of error? Background: The Conventional Methods The standard models of horizontal-well-test analysis have been developed mostly during the 1980's.1-4,8,9 Despite the differences in the development of these models, the basic assumptions and the final solutions are similar. Fig. 1 is a sketch of the horizontal well-reservoir system considered in the pressure-transient-response models. A horizontal well of length Lh is assumed to be located in an infinite slab reservoir of thickness h. The elevation of the horizontal well from the bottom boundary of the formation (well eccentricity) is denoted by zw. The top and bottom reservoir boundaries are usually assumed to be impermeable, although some models consider constant-pressure boundaries.14,15 Before discussing the characteristic features of the conventional horizontal-well transient-pressure-response models, we must first define the dimensionless variables to be used in our discussion. We define the dimensionless pressure, time, and distance in the conventional manner except that we use the horizontal-well half-length, Lh/2, as the reference length in the system. These variables are defined, respectively, by the following expressions.Equation 1Equation 2Equation 3Equation 4 In Eqs. 1 through 3, k=the harmonic average of the principal permeabilities that are assumed to be in the directions of the coordinate axes (). We also define the dimensionless horizontal-well length, wellbore radius, and well eccentricity (distance from the bottom boundary of the formation) as follows.Equation 5Equation 6Equation 7 In Eq. 6, rw, eq=the equivalent radius of the horizontal well in an anisotropic reservoir.26


2021 ◽  
Author(s):  
Ruslan Rubikovich Urazov ◽  
Alfred Yadgarovich Davletbaev ◽  
Alexey Igorevich Sinitskiy ◽  
Ilnur Anifovich Zarafutdinov ◽  
Artur Khamitovich Nuriev ◽  
...  

Abstract This research presents a modified approach to the data interpretation of Rate Transient Analysis (RTA) in hydraulically fractured horizontal well. The results of testing of data interpretation technique taking account of the flow allocation in the borehole according to the well logging and to the injection tests outcomes while carrying out hydraulic fracturing are given. In the course of the interpretation of the field data the parameters of each fracture of hydraulic fracturing were selected with control for results of well logging (WL) by defining the fluid influx in the borehole.


2011 ◽  
Vol 14 (02) ◽  
pp. 248-259 ◽  
Author(s):  
E.. Ozkan ◽  
M Brown ◽  
R.. Raghavan ◽  
H.. Kazemi

Summary This paper presents a discussion of fractured-horizontal-well performance in millidarcy permeability (conventional) and micro- to nanodarcy permeability (unconventional) reservoirs. It provides interpretations of the reasons to fracture horizontal wells in both types of formations. The objective of the paper is to highlight the special productivity features of unconventional shale reservoirs. By using a trilinear-flow model, it is shown that the drainage volume of a multiple-fractured horizontal well in a shale reservoir is limited to the inner reservoir between the fractures. Unlike conventional reservoirs, high reservoir permeability and high hydraulic-fracture conductivity may not warrant favorable productivity in shale reservoirs. An efficient way to improve the productivity of ultratight shale formations is to increase the density of natural fractures. High natural-fracture conductivities may not necessarily contribute to productivity either. Decreasing hydraulic-fracture spacing increases the productivity of the well, but the incremental production gain for each additional hydraulic fracture decreases. The trilinear-flow model presented in this work and the information derived from it should help the design and performance prediction of multiple-fractured horizontal wells in shale reservoirs.


2012 ◽  
Vol 524-527 ◽  
pp. 1310-1313
Author(s):  
Zhi Hong Zhao ◽  
Jian Chun Guo ◽  
Fan Hui Zeng

Due to the differences of stress and physical property in the pay zone, the fractured horizontal well may be different in length and azimuth angle. Furthermore, because of the mutual disturbance among fractures, the accurate prediction of production of fractured horizontal wells become more complicated. This paper presents a new model to predict the production of the fractured horizontal wells by considering the effects of fracture number, fracture length, fracture interval, fracture symmetry, azimuth angle and conductivity. Compared with the numerical simulation, this model needs less parameter and calculating time, and is easy to be applied to the designs of segmentation fracturing in horizontal wells. The model in this paper has been applied to the optimizing designs of hydraulic fracturing for two horizontal wells in North China oilfield and the predicted results agree with the actual production well.


2014 ◽  
Vol 644-650 ◽  
pp. 3379-3382
Author(s):  
Meng Xia Liu ◽  
Ju Hua Li ◽  
Lei Zhang

Conventional productivity research method of fractured horizontal wells doesn’t meticulously describe the seepage characteristics of the near wellbore area. Based on the similarity of seepage field and temperature field, and ANSYS finite element software platform, this paper conducts the simulation calculation of the fractured horizontal wells’ productivity, shows the flow of near wellbore area, and analyzes the factors affecting the productivity on fractured horizontal well by using the heat flow field model in the ANSYS software platform. The results show that the larger the angle between fractures and horizontal wells, the higher the production. It is necessary to place the fractures stagger to the greatest extent, and the fracture spacing should be extended as much as possible in actual production. This optimization design of fractured horizontal well has a certain role in guiding.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pin Jia ◽  
Defeng Wu ◽  
Hengfei Yin ◽  
Zhuang Li ◽  
Linsong Cheng ◽  
...  

Fractured horizontal wells have been widely used to develop unconventional oil and gas reservoirs. In previous studies, most studies on the transient pressure behavior of multistage horizontal wells were based on the assumption of single porosity medium, in which the coupling relationship of natural fractures and artificial fractures was not taken into account or artificial fractures were assumed to be infinitely conductive. In this paper, the fracture is finite conductive, which means that there is flow resistance in the fracture. Based on point-source method and superposition principle, a transient model for multistage fractured horizontal wells, which considers the couple of fracture flow and reservoir seepage, is built and solved with the Laplace transformation. The transient pressure behavior in multistage fractured horizontal wells is discussed, and effects of influence factors are analyzed. The result of this article can be used to identify the response characteristic of fracture conductivity to pressure and pressure differential and provide theoretical basis for effective development of tight oil reservoirs. The findings of this study can help for better understanding of transient pressure behavior of multistage fractured horizontal wells with finite conductivity in tight oil reservoirs.


2014 ◽  
Vol 962-965 ◽  
pp. 489-493
Author(s):  
Zhi Qiang Li ◽  
Yong Quan Hu ◽  
Wen Jiang Xu ◽  
Jin Zhou Zhao ◽  
Jian Zhong Liu ◽  
...  

This article presents a new exploitation method based on the same fractured horizontal well with fractures for injection or production on offshore low permeability oilfields for the purpose of adapting to their practical situations and characteristics, which means fractures close to the toe of horizontal well used for injecting water and fractures near the heel of horizontal well used for producing oil. According to proposed development mode of fracturing, relevant physical model is established, Then reservoir numerical simulation method has been applied to study the effect of arrangement pattern of injection and production fractures, fracture conductivity, fracture length on oil production. Research indicates cumulative oil production is much higher by employing the middle fracture for injecting water compared with using the remote one, suggesting that the middle fracture adopted for injecting water, and hydraulic fracture length and conductivity have been optimized. The proposed development pattern of a staged fracturing for horizontal wells with some fractures applied for injecting water and others for production based on the same horizontal well provides new thoughts for offshore oilfields exploitation.


Sign in / Sign up

Export Citation Format

Share Document