Research on bifurcation and chaos characteristics of planet gear transmission system with mixed elastohydrodynamic lubrication (EHL) friction

Author(s):  
Jingyue Wang ◽  
Ning Liu ◽  
Haotian Wang ◽  
Lixin Guo

Abstract In order to study the influence of friction on the nonlinear dynamic characteristics of a planetary gear system, the dynamic model of a planet gear transmission system considering mixed elastohydrodynamic lubrication (EHL) friction, time-varying meshing stiffness, backlash and comprehensive meshing error is established. The Runge–Kutta method is used to solve the dynamic differential equations, and the bifurcation and chaos characteristics of the system are analysed through the bifurcation diagram, largest lyapunov exponent (LLE), Poincaré map, phase diagram, time history curve diagram and fast fourier transform (FFT)spectrum. The results of numerical simulation show that the planetary gear system with mixed EHL friction exhibits rich bifurcation characteristics, and the system experiences short-periodic motion, long-periodic motion, quasi-periodic motion and chaotic motion. The effect of tooth surface friction on the bifurcation characteristics of the planetary gear system is more obvious at high frequency than that at low frequency. Tooth surface friction causes the system to enter chaotic motion in advance.

Author(s):  
Jingyue Wang ◽  
Ning Liu ◽  
Haotian Wang ◽  
Jiaqiang E

Based on the lumped mass method, a torsional vibration model of the planetary gear system is established considering the nonlinear factors such as friction, time-varying meshing stiffness, backlash, and comprehensive error. The Runge–Kutta numerical method is used to analyze the motion characteristics of the system with various parameters and the influence of tooth friction on the bifurcation and chaos characteristics of the system. The numerical simulation results show that the system has rich bifurcation behavior with the excitation frequency, damping ratio, comprehensive error amplitude, load and backlash, and experiences multiple periodic motion and chaotic motion. Tooth friction makes the bifurcation behavior of the system fuzzy in the high frequency and heavy load areas, makes the chaos of the system restrained in the low-damping ratio and light load areas, advances the bifurcation point of the system in the small comprehensive error amplitude area, and makes the period window of the chaos area larger in the large-backlash area, which makes the bifurcation behavior of the system more complex.


2013 ◽  
Vol 569-570 ◽  
pp. 489-496 ◽  
Author(s):  
Yong Gui ◽  
Qin Kai Han ◽  
Zheng Li ◽  
Zhi Ke Peng ◽  
Fu Lei Chu

Tooth breakage is a typical failure form of wind-turbine planetary gear transmission system, it is important to study the influence of tooth breakage on vibration characteristics of planetary gear transmission system. In this paper, considering the tooth breakage defect, a lumped parameter vibration model of a planetary gear system with time-periodic mesh stiffness is established. Effects of the length and width of tooth breakage on meshing stiffness and dynamic response are discussed in detail. The relation between characteristic frequency of the tooth breakage fault and rotating speeds is pointed out. Several statistical indicators are utilized to show the influence of two parameters (length of planet tooth breakage and input speed) on the dynamic response of the system. Experiments are carried out to verify the simulation results. These results would be useful for fault diagnosis of wind turbine transmission system at different operation conditions.


Author(s):  
Shaoshuai Hou ◽  
Jing Wei ◽  
Aiqiang Zhang ◽  
Teik C. Lim ◽  
Chunpeng Zhang

Tooth friction is unavoidable and changes periodically in gear engagement. Friction excitation is an important excitation source of a gear transmission system. They are different than the friction coefficients of any two points on the same contact line of a helical/herringbone gear. In order to obtain the influence of the friction excitation on the dynamic response of a helical/herringbone planetary gear system, a method that uses piecewise solution and then summing them to analyze the friction force and frictional torque of tooth surfaces is proposed. Then, the friction coefficient is obtained based on the mixed elastohydrodynamic lubrication (EHL) theory. A dynamic model of a herringbone planetary gear system is established considering the friction, mesh stiffness, and meshing error excitation by the node finite element method. The influence of friction excitation on the dynamic response of the herringbone planetary gear is studied under different working conditions. The results show that friction excitation has a great influence on the vibration acceleration of the sun and planetary gear. However, the effect on the radial and tangential vibration acceleration of a planetary gear is the opposite. In addition, the friction excitation has a slight effect on the meshing force.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Zaigang Chen ◽  
Yimin Shao

Planetary gears are widely used in the industry due to their advantages of compactness, high power-to-weight ratios, high efficiency, and so on. However, planetary gears such as that in wind turbine transmissions always operate under dynamic conditions with internal and external load fluctuations, which accelerate the occurrence of gear failures, such as tooth crack, pitting, spalling, wear, scoring, scuffing, etc. As one of these failure modes, gear tooth crack at the tooth root due to tooth bending fatigue or excessive load is investigated; how it influences the dynamic features of planetary gear system is studied. The applied tooth root crack model can simulate the propagation process of the crack along tooth width and crack depth. With this approach, the mesh stiffness of gear pairs in mesh is obtained and incorporated into a planetary gear dynamic model to investigate the effects of the tooth root crack on the planetary gear dynamic responses. Tooth root cracks on the sun gear and on the planet gear are considered, respectively, with different crack sizes and inclination angles. Finally, analysis regarding the influence of tooth root crack on the dynamic responses of the planetary gear system is performed in time and frequency domains, respectively. Moreover, the differences in the dynamic features of the planetary gear between the cases that tooth root crack on the sun gear and on the planet gear are found.


Author(s):  
Xiangyang Xu ◽  
Tianhong Luo ◽  
Jiayuan Luo ◽  
Xia Hua ◽  
Reza Langari

To investigate the dynamical load sharing behaviors of multi-floating components in the heavy load planetary gear system, a multi-floating planetary gear system that includes a floating central component and a quasi-floating planet flexible supporting pin is employed. Then a 21 degree of freedom lumped parameters dynamical model of this system is presented to study the dynamical load sharing behaviors. Some influencing factors, such as supporting stiffness, positions error of sun or carrier, and external input load are analyzed on the dynamical load sharing of the planetary gear system with multi-floating components. The results demonstrate that the load sharing condition of the system is best when both the sun gear and planet gears are multi-floating at the same time. When the planet gear position errors remain constant, reducing the flexible pin stiffness of planet gear or increasing external input load can effectively improve the load sharing. These conclusions are verified by the relevant experiments.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110356
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Renzhen Chen

According to the working characteristics of a 1.5 MW wind turbine planetary gear system under complex and random wind load, a two-parameter Weibull distribution model is used to describe the distribution of random wind speed, and the time-varying load caused by random wind speed is obtained. The nonlinear dynamic model of planetary gear transmission system is established by using the lumped parameter method, and the relative relations among various components are derived by using Lagrange method. Then, the relative relationship between the components is solved by Runge Kutta method. Considering the influence of random load and stiffness ratio on the planetary gear transmission system, the nonlinear dynamic response of cyclic load and random wind load on the transmission system is analyzed. The analysis results show that the variation of the stiffness ratio makes the planetary gear have abundant nonlinear dynamics behavior and the planetary gear can get rid of chaos and enter into stable periodic motion by changing the stiffness ratio properly on the premise of ensuring transmission efficiency. For the variable pitch wind turbine, the random change of external load increases the instability of the system.


2014 ◽  
Vol 15 (11) ◽  
pp. 2357-2366 ◽  
Author(s):  
Wei Sun ◽  
Xin Ding ◽  
Jing Wei ◽  
Xinglong Hu ◽  
Qingguo Wang

Author(s):  
Jing Liu ◽  
Shizhao Ding ◽  
Linfeng Wang ◽  
Hongwu Li ◽  
Jin Xu

The bearing clearance, external torque, and input speed can greatly affect vibrations of the planetary gear system. The double-row planetary gear systems are commonly used in the gearbox of special vehicles, which are the key parts to obtain a larger gear ratio. Although many works have been presented to study those factors on vibrations of the single-row planetary gear system, a few works were focused on vibrations of the double-row planetary gear system with the bearing clearance. To overcome this problem, a multi-body dynamic model of a double-row planetary gear system with six planet bearings and one supported bearing of the sun gear is presented. This model is the main part of a gear box transmission system. The new model is developed for studying the effect of the bearing clearance on the planetary system. The meshing stiffness and damping between the gears are obtained by current methods in the listed references, as well as the contact stiffness and damping in bearings. The liner stiffness and damping model is used. The effects of the bearing clearance, external torque, and input speed on vibrations of the system are analyzed. The results show that vibrations of the ring gear and sun gear decrease with the increment of the external torque and increase with the increment of the input speed. Moreover, a reasonable bearing clearance can be helpful for reducing system vibrations for some mating external torque and input speed conditions. The results can provide some guidance to find new method to reduce vibrations and increase the service life of planetary gear systems.


Sign in / Sign up

Export Citation Format

Share Document