scholarly journals Review Article. Technical aspects of oxygen level regulation in primary cell cultures: A review

2016 ◽  
Vol 9 (3-4) ◽  
pp. 85-89 ◽  
Author(s):  
Mazyar Yazdani

Abstract Oxygen (O2) is an essential element for aerobic respiration. Atmospheric concentration of O2 is approximately 21%. Mammalian cells, however, are generally adapted to O2 levels much lower than atmospheric conditions. The pericellular levels of O2 must also be maintained within a fairly narrow range to meet the demands of cells. This applies equally to cells in vivo and cells in primary cultures. There has been growing interest in the performance of cell culture experiments under various O2 levels to study molecular and cellular responses. To this end, a range of technologies (e.g. gas-permeable technology) and instruments (e.g. gas-tight boxes and gas-controlled incubators) have been developed. It should be noted, however, that some of these have limitations and they are still undergoing refinement. Nevertheless, better results should be possible when technical concerns are taken into account. This paper aims to review various aspects of O2 level adjustment in primary cell cultures, regulation of pericellular O2 gradients and possible effects of the cell culture medium.

The adrenal gland is an endocrine gland, which in the process of organogenesis is formed from ecto- and mesoderm derivatives. The mechanisms that make cell types of different origins unite, migration routes, and cell interactions are still not fully understood. One of the tools for studying these mechanisms is the primary cell culture obtained from the adrenal gland. The aim of our work was to compare the morphological features of primary cell cultures of model animals belonging to different orders – pigs, rabbits and mice in vitro under various cultivation conditions (growth surface pattern, presence of growth factors), as well as developing methodological approaches for obtaining and maintaining primary cultures of adrenal cell of neonatal animals. Cultivation was performed under standard conditions of temperature and humidity, carbon dioxide concentration, on culture surfaces with normal and reduced adhesiveness in a nutrient medium DMEM enriched with 10% fetal calf serum (FTS) or growth supplements B-27 and FGF. It was established that cell cultures of adrenal neonatal rabbits and piglets that were cultured under conditions of normal adhesion and using FCS had a heterogeneous composition, and were presented as a monolayer consisting of cells of several morphological types, and multicellular spheroids (MS). When cultivated on the surface with reduced adhesive properties in cultures of adrenal glands of piglets and rabbits, a cell monolayer was not formed, but flotation MCs were formed. After transferring MCs of both species to the adhesive culture surface on day 14, cell eviction, their migration from the MCs and formation of a monolayer are observed. Similar stages in the development of primary cell cultures derived from rabbits and piglets suggest the existence of a universal cellular composition in the neonatal adrenal glands of these species and allow applying the same approaches to the primary cultures derived from them. Unlike other studied species, monolayer and MS formation does not occur in cell cultures of mouse neonatal adrenal glands. Cultures consist of single attached and floating cells and small cell aggregates.


Author(s):  
Gomez Bello Rosa ◽  
Sanchez Molina Magdy ◽  
Vargas Brochero Daniela ◽  
Botero Espinosa Lucia

2021 ◽  
Vol 44 (5) ◽  
pp. 1065-1085
Author(s):  
Elizabeth Ann Roundhill ◽  
Mariona Chicon-Bosch ◽  
Lee Jeys ◽  
Michael Parry ◽  
Kenneth S Rankin ◽  
...  

Abstract Purpose The development of biomarkers and molecularly targeted therapies for patients with Ewing sarcoma (ES) in order to minimise morbidity and improve outcome is urgently needed. Here, we set out to isolate and characterise patient-derived ES primary cell cultures and daughter cancer stem-like cells (CSCs) to identify biomarkers of high-risk disease and candidate therapeutic targets. Methods Thirty-two patient-derived primary cultures were established from treatment-naïve tumours and primary ES-CSCs isolated from these cultures using functional methods. By RNA-sequencing we analysed the transcriptome of ES patient-derived cells (n = 24) and ES-CSCs (n = 11) to identify the most abundant and differentially expressed genes (DEGs). Expression of the top DEG(s) in ES-CSCs compared to ES cells was validated at both RNA and protein levels. The functional and prognostic potential of the most significant gene (neurexin-1) was investigated using knock-down studies and immunohistochemistry of two independent tumour cohorts. Results ES-CSCs were isolated from all primary cell cultures, consistent with the premise that ES is a CSC driven cancer. Transcriptional profiling confirmed that these cells were of mesenchymal origin, revealed novel cell surface targets for therapy that regulate cell-extracellular matrix interactions and identified candidate drivers of progression and relapse. High expression of neurexin-1 and low levels of regulators of its activity, APBA1 and NLGN4X, were associated with poor event-free and overall survival rates. Knock-down of neurexin-1 decreased viable cell numbers and spheroid formation. Conclusions Genes that regulate extracellular interactions, including neurexin-1, are candidate therapeutic targets in ES. High levels of neurexin-1 at diagnosis are associated with poor outcome and identify patients with localised disease that will relapse. These patients could benefit from more intensive or novel treatment modalities. The prognostic significance of neurexin-1 should be validated independently.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2541
Author(s):  
Clara Fricano ◽  
Eric Röttinger ◽  
Paola Furla ◽  
Stéphanie Barnay-Verdier

Cnidarian primary cell cultures have a strong potential to become a universal tool to assess stress-response mechanisms at the cellular level. However, primary cell cultures are time-consuming regarding their establishment and maintenance. Cryopreservation is a commonly used approach to provide stable cell stocks for experiments, but it is yet to be established for Cnidarian cell cultures. The aim of this study was therefore to design a cryopreservation protocol for primary cell cultures of the Cnidarian Anemonia viridis, using dimethyl sulfoxide (DMSO) as a cryoprotectant, enriched or not with fetal bovine serum (FBS). We determined that DMSO 5% with 25% FBS was an efficient cryosolution, resulting in 70% of post-thaw cell survival. The success of this protocol was first confirmed by a constant post-thaw survival independently of the cell culture age (up to 45 days old) and the storage period (up to 87 days). Finally, cryopreserved cells displayed a long-term recovery with a maintenance of the primary cell culture parameters and cellular functions: formation of cell aggregates, high viability and constant cell growth, and unchanged intrinsic resistance to hyperthermal stress. These results will further bring new opportunities for the scientific community interested in molecular, cellular, and biochemical aspects of cnidarian biology.


2007 ◽  
Vol 82 (4) ◽  
pp. 2033-2037 ◽  
Author(s):  
K.-S. Kim ◽  
N. M. Chapman ◽  
S. Tracy

ABSTRACT Coxsackievirus B3 (CVB3) generates 5′-terminally deleted genomes (TDs) during replication in murine hearts. We show here that CVB3 populations with TDs can also be generated within two to three passages of CVB3 in primary, but not immortalized, cell cultures. Deletions of less than 49 nucleotides increase in size during passage, while 5′ TDs of 49 nucleotides appear to be the maximum deletion size. The cellular environment of contact-inhibited primary cell cultures or the myocardium in vivo is sufficient for the selection of 5′ TDs over undeleted genomes.


1972 ◽  
Vol 58 (2) ◽  
pp. 95-106 ◽  
Author(s):  
José Menezes

This paper describes some important features of successive generations of tumors produced in hamsters by inoculation of SV40-transformed cells (C12TSV5 and RHaT), and presents data indicating the correlation among increased percentage of polykaryocytes in the tumor primary cell cultures, increased capacity of cells for fusion, and the production of metastases. According to our knowledge this correlation has not yet been described in tumor biology. The data presented also suggest that the large polykaryocytes from tumor primary cell cultures do not multiply and that they are particularly affected by most experimental procedures. Thus they appear to perish or be drastically reduced in cultures of cells submitted to centrifugation, freezing procedures for routine cells preservation and even trypsination. Our observations also show that cell morphology, SV40 rescuability, and T-antigen appear to be among the features which are not lost in transformed cells throughout in vivo passages. Furthermore, a theory is discussed in an attempt to explain, in part, the local growth of the tumor as well as the occurrence of metastases in the hamster, particularly those at the lymph node level.


Sign in / Sign up

Export Citation Format

Share Document