Numerical Simulation of Tensile Residual Stresses in SWCNT-Reinforced Polymer Composites

2021 ◽  
Vol 36 (1) ◽  
pp. 13-25
Author(s):  
M. R. Soleimany ◽  
M. Jamal-Omidi ◽  
S. M. Nabavi ◽  
M. Tavakolian

Abstract The residual stresses play a significant role in the mechanical properties and strengthening capability of nanocomposites. The present research aims to numerically investigate the residual stress relaxation in nanotube-reinforced polymers in response to mechanical tensile loading. The systems under study consist of the armchair and zigzag single-walled carbon nanotubes (SWCNT) embedded in a polymer matrix. The nanotubes and polymer matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones (L-J) potential at the interface. The interactions between carbon atoms in the nanotube and nodes in the polymer matrix are modelled by equivalent springs. In order to evaluate the analysis of elastic-perfectly plastic using finite element (FE) modelling, first, relaxation of the plastic residual stresses on steel hemisphere in contact with a rigid flat surface was examined in a loading-unloading cycle and verified with available data. Afterwards, the residual stress relaxation in nanotubes with different space-frame structures was computed due to displacement-controlled loading. Finally, the stress state and the plastic residual stresses in the nanocomposite for different carbon nanotube content were analyzed and discussed during loading and unloading. Regarding the effect of tensile stress, it was revealed that nanotube structures have significant effects on the residual stresses created in the nanocomposite.

2019 ◽  
Vol 973 ◽  
pp. 183-188
Author(s):  
Albert V. Korolev ◽  
Andrei F. Balayev ◽  
Boris M. Iznairov

This paper discusses the technological method of residual stress relaxation of bearing rings by centerless running with cylindrical rolls. Described a new approach to relieve residual stresses by centerless running of elastically-deforming rolls on the basis of the geometrical setup of the equipment. It was found that geometrical setup of the equipment influences an elastic strain of parts and the degree of residual stress relaxation. We obtained a mathematical model for calculation of setup parameters to ensure the required variation value of elastic strain of the part. The results of experiments confirm the influence of the geometric setup on the magnitude of residual stress relaxation.


Lubricants ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 50
Author(s):  
Per-Lennart Larsson

The determination of residual stresses is an important issue when it comes to material failure analysis. The variation of global indentation properties, due to the presence of residual stresses, can serve as a guideline for the size and direction of such stresses. One of these global indentation properties, the material hardness, is unfortunately invariant of residual stresses when metals and alloys are at issue. In this situation, one has to rely on the size of the indentation contact area for residual stress determination. For other materials such as ceramics and polymers, where elastic deformations are of greater importance at indentation, such invariance is no longer present. Here, this variation is investigated based on finite element simulations. The aim is then to determine how the indentation hardness is influenced by the principal residual stress ratio and also discuss if such an influence is sufficient in order to determine the size and direction of such stresses in an experimental situation. It should be emphasized that this work does not suggest a new approach to residual stress determination (by indentation testing) but investigates the applicability of previously derived methods to a situation where the surface stress field is not simplified as equi-biaxial or uniaxial. For simplicity, but not out of necessity, only cone indentation of elastic-perfectly plastic materials is considered.


Author(s):  
Rajesh Prasannavenkatesan ◽  
David L. McDowell

Using a three-dimensional crystal plasticity model for cyclic deformation of lath martensitic steel, a simplified scheme is adopted to simulate the effects of shot peening on inducing initial compressive residual stresses. The model is utilized to investigate the subsequent cyclic relaxation of compressive residual stresses in shot peened lath martensitic gear steel in the high cycle fatigue (HCF) regime. A strategy is identified to model both shot peening and cyclic loading processes for polycrystalline ensembles. The relaxation of residual stress field during cyclic bending is analyzed for strain ratios Rε=0 and −1 for multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the relaxation of residual stresses in HCF. For the case of Rε=−1, the cyclic plasticity occurs throughout the microstructure (macroplasticity) during the first loading cycle, resulting in substantial relaxation of compressive residual stresses at the surface and certain subsurface depths. The initial magnitude of residual stress is observed to influence the degree (percentage) of relaxation. Describing the differential intergranular yielding is necessary to capture the experimentally observed residual stress relaxation trends.


2010 ◽  
Vol 160-162 ◽  
pp. 241-246 ◽  
Author(s):  
Yong Hui Hu ◽  
Yun Xin Wu ◽  
Guang Yu Wang ◽  
Jun Kang Guo

Different distributed residual stresses were introduced by quenching and two shot-peening treatments on 7075 aluminum alloy. The residual stress distributions and micro-hardness profiles in surface layers were measured. Pre-stress coefficient characterizing contribution of local residual stresses to local yield strength is introduced to analyze residual stress relaxation under cyclic loading. Load testing shows that re-distribution of residual stresses and proportional decrease of the pre-stress coefficient would occur in the non-uniform structural residual stresses introduced by quenching, while great stress relaxation and non-linear decrease of the pre-stress coefficient would occur in the uniform surface residual stresses introduced by shot-peening. Additionally, advantages of surface compressive residual stress and micro yield strength on anti-fatigue property and on restraining initiation and propagation of surface micro cracks should be considered in the usually conservative engineering design.


2010 ◽  
Vol 638-642 ◽  
pp. 2429-2433 ◽  
Author(s):  
Gennadiy Stepanov ◽  
Anatoli Babutsky ◽  
Leopold Kruszka

The results of investigations of the influence of the treatment based on a direct passage of pulsed electric current of high density through the simple parts with a copper-composite joint, coatings and a grinded surface causing residual stress relaxation and redistribution of the stresses are presented in the paper.


2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


2011 ◽  
Vol 462-463 ◽  
pp. 1355-1360
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi

It is important to account for residual stress relaxation phenomenon in the design of the component. Specimens of 2024-T351 aluminium alloy were used in this study. The specimens were shot peened under three different shot peening intensities. Cyclic tests for two load magnitudes were performed for 1, 2, 10, 1000 and 10000 cycles. Residual stresses, microhardness and the cold work percentage were measured at initial state and after each loading cycle for the three shot peening intensities and for the two loads. The study revealed that most of the drop in the residual stress, microhardness and cold work happened in the first cycle are dependent on the applied load.


Sign in / Sign up

Export Citation Format

Share Document