4.4 Drop Time, Td

2021 ◽  
Author(s):  
José M. Pingarrón ◽  
Ján Labuda ◽  
Jiří Barek ◽  
Christopher M. A. Brett ◽  
Maria Filomena Camões ◽  
...  
Keyword(s):  
1987 ◽  
Vol 52 (11) ◽  
pp. 2810-2818 ◽  
Author(s):  
Emil Paleček ◽  
František Jelen ◽  
Vladimír Vetterl

The behaviour of electrochemically reducible single-strand polynucleotides (poly(adenylic acid)) and poly(cytidylic acid)) was studied by the differential (derivative) pulse polarography (DPP) and by other methods. Measurements were performed with the help of the dropping mercury electrode under various conditions specified by the pulse width, pulse amplitude, drop time etc. For the faradaic and tensammetric DPP peaks the diagnostic criteria were proposed which make it possible to classify even very small DPP peaks of double helical polynucleotides.


1959 ◽  
Vol 6 (4) ◽  
pp. 328-332 ◽  
Author(s):  
Charles Zucker ◽  
Lewis Haring
Keyword(s):  

2009 ◽  
Vol 10 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Massimiliano Ignaccolo ◽  
Carlo De Michele ◽  
Simone Bianco

Abstract This study looks for statistically invariant properties of the sequences of inter-drop time intervals and drop diameters. The authors provide evidence that these invariant properties have the following characteristics: 1) large inter-drop time intervals (≳10 s) separate drops of small diameter (≲0.6 mm); 2) the rainfall phenomenon has two phases: a quiescent phase, whose contribution to the total cumulated flux is virtually null, and an active, nonquiescent, phase that is responsible for the bulk of the precipitated volume; 3) the probability density function of inter-drop time intervals has a power-law-scaling regime in the range of ∼1 min and ∼3 h); and 4) once the moving average and moving standard deviation are removed from the sequence of drop diameters, an invariant shape emerges for the probability density function of drop diameters during active phases.


1984 ◽  
Vol 62 (9) ◽  
pp. 1817-1821
Author(s):  
K. C. Gupta ◽  
Kalpana K. Sharma

The polarographic behaviour of n-butylthioglycolate (RSH) at the DME in aqueous media, methanol, and acetonitrile has been investigated in the presence of 0.1 M KNO3 and 0.01% thymol. The effect of pH, concentration of RSH, and drop time on the wave characteristics and the mechanism of the reaction occurring at the surface of the mercury drop have been studied. Well-defined reversible and diffusion-controlled anodic waves were obtained in aqueous media (pH 4.2), 40% methanol (pH 3.22), and 40% acetonitrile (pH 2.96). Mathematical and analytical evidence was obtained to show that the anodic wave of RSH at a dropping mercury electrode in aqueous media, 40% methanol, and 40% acetonitrile is due to the formation of the mercury complex RSHg. The dissociation constant (pK) of the mercapto group in n-butylthioglycolate is 9.6 and the diffusion coefficient in the different media are 1.17 × 10−6 cm2 s−1 (in aqueous media) 1.23 × 10−6 cm2 s−1 (in 40% methanol), and 2.43 × 10−6 cm2 s−1 (in 40% acetonitrile). The linearity of id with RSH concentration provides a rapid and precise method for the determination of RSH, down to 0.4 mM in aqueous media, methanol, and acetonitrile.


Author(s):  
R. Vijayashree ◽  
R. Veerasamy ◽  
Sudheer Patri ◽  
S. Suresh Kumar ◽  
S. C. S. P. Kumar Krovvidi ◽  
...  

PFBR, India’s first commercial fast breeder reactor employing fast fission is a challenging project from technological point of view to meet the energy security of the country. It is currently under advanced stage of construction at Kalpakkam, India. PFBR is equipped with two independent, fast acting and diverse shutdown systems. A shutdown system comprises of sensors, logic circuits, drive mechanisms and neutron absorbing rods. The absorber rods of the second shutdown system of PFBR are called as Diverse Safety rods (DSR) and their drive mechanisms are called as Diverse Safety Rod Drive Mechanisms (DSRDM). DSR are normally parked above active core by DSRDM. On receiving scram signal, Electromagnet of DSRDM is de-energised and it facilitates fast shutdown of the reactor by dropping the DSR in to the active core. For the prototype development of DSR and DSRDM, three phases of testing namely individual component testing, integrated functional testing in room temperature and endurance testing at high temperature sodium were planned and are being done. The electromagnet of DSRDM operates at high temperature sodium environment continuously. It has been separately tested at room temperature, in furnace and in sodium. Specimens simulating the contact conditions between Electromagnet and armature of DSR have been tested to rule out self welding possibility. The Dashpot provided to decelerate the DSR at the end of its free fall has been initially tested in water and then in sodium. The prototype of DSR has been tested in flowing water to determine the pressure drop and drop time. The functional testing of the integrated prototype DSRDM and DSR in aligned and misaligned conditions in air/water has been completed. The performance testing of the integrated system in sodium has been done in three campaigns. Based on the performance testing in the first two campaigns of sodium testing, design modifications and manufacturing quality improvement were done. Methods of drop time measurement based on ultrasonics and acoustics were also developed along with the first two campaigns. During the third campaign of sodium testing, the performance of the system has been verified with 30 mm misalignment at various temperatures. The third campaign has qualified the system for 10 years of operation in reactor. This paper describes the test setup for all the above mentioned testing and also gives typical test results.


1983 ◽  
Vol 48 (4) ◽  
pp. 964-975 ◽  
Author(s):  
Ladislav Novotný ◽  
Ivan Smoler ◽  
Jaroslav Kůta

Using drop-time technique with long drop-times achieved by means of a spindle-type capillary with the combination of a interrupted convection the surface tension data of tetrabutylammonium perchlorate in 0.1 mol l-1 NaClO4 in the concentration range 3 . 10-3 mol l-1 down to 10-7 mol l-1 could be measured. The corresponding adsorption parameters have been evaluated both from Langmuir (for Θ ⪬ 0.8) and Frumkin isotherm. The maximum energy of adsorption amounts to -48.1 kJ . mol-1. The dependence of E vs log c (Yesin-Markov plot) carried out in the concentration range 10-7 to 10-3 mol l-1 showed a S-shaped curve.


Sign in / Sign up

Export Citation Format

Share Document