Assessing the quality of GEOID12B model through field surveys

2018 ◽  
Vol 12 (1) ◽  
pp. 1-13
Author(s):  
Ahmed Elaksher ◽  
Franck Kamtchang ◽  
Christian Wegmann ◽  
Adalberto Guerrero

AbstractElevation differences have been determined through conventional ground surveying techniques for over a century. Since the mid-80s GPS, GLONASS and other satellite systems have modernized the means by which elevation differences are observed. In this article, we assessed the quality of GEIOD12B through long-occupation GNSS static surveys. A set of NGS benchmarks was occupied for at least one hour using dual-frequency GNSS receivers. Collected measurements were processed using a single CORS station at most 24 kilometers from the benchmarks. Geoid undulation values were driven by subtracting measured ellipsoidal heights from the orthometric heights posted on the NGS website. To assess the quality of GEOID12B, we compared our computed vertical shifts at the benchmarks with those estimated from GEOID12B published by NGS. In addition, Kriging model was used to interpolate local maps for the geoid undulations from the benchmark heights. The maps were compared with corresponding parts of GEOID12B. No biases were detected in the results and only shifts due to random errors were found. Discrepancies in the range of ten centimetres were noticed between our geoid undulation and the values available from NGS.

2020 ◽  
Author(s):  
Periklis-Konstantinos Diamantidis ◽  
Grzegorz Klopotek ◽  
Rüdiger Haas

<div>The emergence of BeiDou and Galileo as operational Global Navigation Satellite Systems (GNSS), in addition to Global Positioning System (GPS) and GLONASS which are already in use, opens up possibilities in delivering geodetic products with higher precision. Apart from ensuring the homogeneity of the derived products, multi-GNSS analysis takes the advantage of new frequencies and an improved sky coverage. This should lead to better phase ambiguity resolution and an improved estimation of target parameters such as zenith wet delays (ZWD), troposphere gradients (GRD) and station positions. The International GNSS Service (IGS) has realised this potential by initiating the Multi-GNSS Experiment (MGEX) which provides orbit, clock and observation data for all operational GNSS. Correspondingly, the multi-technique space geodetic analysis software c5++ has been augmented with a MGEX-compliant GNSS module. Based on this new module and the Precise Point Positioning (PPP) approach using six-month of data, an assessment of the derived geodetic products is carried out for several GNSS receivers located at the Onsala core site. More specifically, we perform both single- and multi-GNSS data analysis using Kalman filter and least-squares methods and assess the quality of the derived station positions, ZWD and GRD. A combined solution using all GNSS together is carried out and the improvement with respect to station position repeatabilities is assessed for each station. Inter-system biases, which homogenise the different time scale that each GNSS operates in and are necessary for the multi-GNSS combination, are estimated and presented. Finally, the applied inter-system weighting is discussed as well as its impact on the derived geodetic products.</div>


2017 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Emmanuel Menegbo

The Global navigation satellite systems (GNSS) has imparted positively on civilian positioning & surveying in the horizontal component in Nigeria for the past two decades. The GNSS receivers’ data are longitude, latitude & elevation. However, the vertical distance measurement have not been fully exploited by geodetic and land surveyors. The GNSS derived heights are ellipsoidal elevation. To convert the GNSS elevation to orthometric heights, a geoidal elevation models is needed. The Earth Gravitational Model, 2008 (EGM2008) is a global geoidal models that can be used to obtain GNSS orthometric heights by defining the relationship with the ellipsoid. This work determines GNSS-derived orthometric heights with ellipsoid-geoidal relationship using GPS ellipsoidal heights and EGM2008 geoidal model GIS data. The EGM2008 GIS data was downloaded and interpolated with GPS data to obtain geoidal heights using ArcGIS 10.1. GNSS-derived heights determined with geoid-ellipsoid relationship formula. The result shows minimum elevation of -2.37599m and maximum elevation of 53.8566m.The derived orthometric heights use to create a model in raster format. The orthometric elevation models created useful in all vertical surveying work, construction work and urban planning. The GNSS orthometric heights models need to be compare with spirit levelling and the local geoidal model determined for improve accuracy.


2020 ◽  
Vol 24 (1) ◽  
pp. 97-103
Author(s):  
Cassio Vinícius Carletti Negri ◽  
Paulo Cesar Lima Segantine

In recent decades, due to the increasing mobility of people and goods, the rapid growth of users of mobile devices with location-based services has increased the need for geospatial information. In this context, positioning using data collected by the Global Navigation Satellite Systems (multi-GNSS) has gained more importance in the field of geomatics. The quality of the solutions is related, among other factors, to the receiver’s type used in the work. To improve the positioning with low-cost devices and to avoid additional user expenses, this work aims to propose the implementation of an Artificial Neural Network (ANN) to estimate the GPS L2 carrier observables. For this, a network model was selected through the cross-validation (CV) technique, the observations were estimated, and the accuracy of the solutions was analyzed. The CV technique demonstrated that a Multilayer Perceptron with four intermediate layers and one with one intermediate layer are the most appropriate configurations for this problem. The dual-frequency RINEX processing (with artificial data) revealed significant improvements. For some tests, it was possible to comply with the rural property georeferencing regulations of the Brazilian National Institute of Colonization and Agrarian Reform (INCRA). The results indicate, therefore, that the methodological proposal of the present investigation is very promising for approximating the quality of positioning reachable using a dual-frequency receiver.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5552
Author(s):  
Daniel Janos ◽  
Przemysław Kuras

Positioning with low-cost GNSS (Global Navigation Satellite System) receivers is becoming increasingly popular in many engineering applications. In particular, dual-frequency receivers, which receive signals of all available satellite systems, offer great possibilities. The main objective of this research was to evaluate the accuracy of a position determination using low-cost receivers in different terrain conditions. The u-blox ZED-F9P receiver was used for testing, with the satellite signal supplied by both a dedicated u-blox ANN-MB-00 low-cost patch antenna and the Leica AS10 high-precision geodetic one. A professional Leica GS18T geodetic receiver was used to acquire reference satellite data. In addition, on the prepared test base, observations were made using the Leica MS50 precise total station, which provided higher accuracy and stability of measurement than satellite positioning. As a result, it was concluded that the ZED-F9P receiver equipped with a patch antenna is only suitable for precision measurements in conditions with high availability of open sky. However, the configuration of this receiver with a geodetic-grade antenna significantly improves the quality of results, beating even professional geodetic equipment. In most cases of the partially obscured horizon, a high precision positioning was obtained, making the ZED-F9P a valuable alternative to the high-end geodetic receivers in many applications.


At production of fabrics, including fabrics for agricultural purpose, an important role is played by the cor-rect adjustment of operation of machine main regulator. The quality of setup of machine main controller is determined by the proper selection of rotation angle of warp beam weaving per one filling thread. In the pro-cess of using the regulator as a result of mistakes in adjustment, wear of transmission gear and backlashes in connections of details there are random changes in threads length. The purpose of the article is the research of property of random errors of basis giving by STB machine regulator. Mistakes can be both negative, and positive. In case of emergence only negative or only positive mistakes operation of the machine becomes im-possible as there will be a consecutive accumulation of mistakes. As a result of experimental data processing for stable process of weaving and the invariable diameter of basis threads winding of threads it is revealed that the random error of giving is set up as linear function of the accidental length having normal distribution. Measurements of accidental deviations in giving of a basis by the main regulator allowed to construct a curve of normal distribution of its actual length for one pass of weft thread. The presented curve of distribution of random errors in giving of a basis is the displaced curve of normal distribution of the accidental sizes. Also we define the density of probability of normal distribution of basis giving errors connected with a margin er-ror operation of the main regulator knowing of which allows to plan ways of their decrease that is important for improvement of quality of the produced fabrics.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Faiza Siddiqui ◽  
Marija Barbateskovic ◽  
Sophie Juul ◽  
Kiran Kumar Katakam ◽  
Klaus Munkholm ◽  
...  

Abstract Background Major depression significantly impairs quality of life, increases the risk of suicide, and poses tremendous economic burden on individuals and societies. Duloxetine, a serotonin norepinephrine reuptake inhibitor, is a widely prescribed antidepressant. The effects of duloxetine have, however, not been sufficiently assessed in earlier systematic reviews and meta-analyses. Methods/design A systematic review will be performed including randomised clinical trials comparing duloxetine with ‘active’ placebo, placebo or no intervention for adults with major depressive disorder. Bias domains will be assessed, an eight-step procedure will be used to assess if the thresholds for clinical significance are crossed. We will conduct meta-analyses. Trial sequential analysis will be conducted to control random errors, and the certainty of the evidence will be assessed using GRADE. To identify relevant trials, we will search Cochrane Central Register of Controlled Trials, Medical Literature Analysis and Retrieval System Online, Excerpta Medica database, PsycINFO, Science Citation Index Expanded, Social Sciences Citation Index, Conference Proceedings Citation Index—Science and Conference Proceedings Citation Index—Social Science & Humanities. We will also search Chinese databases and Google Scholar. We will search all databases from their inception to the present. Two review authors will independently extract data and perform risk of bias assessment. Primary outcomes will be the difference in mean depression scores on Hamilton Depression Rating Scale between the intervention and control groups and serious adverse events. Secondary outcomes will be suicide, suicide-attempts, suicidal ideation, quality of life and non-serious adverse events. Discussion No former systematic review has systematically assessed the beneficial and harmful effects of duloxetine taking into account both the risks of random errors and the risks of systematic errors. Our review will help clinicians weigh the benefits of prescribing duloxetine against its adverse effects and make informed decisions. Systematic review registration PROSPERO 2016 CRD42016053931


2021 ◽  
Author(s):  
Tomasz Hadas ◽  
Grzegorz Marut ◽  
Jan Kapłon ◽  
Witold Rohm

<p>The dynamics of water vapor distribution in the troposphere, measured with Global Navigation Satellite Systems (GNSS), is a subject of weather research and climate studies. With GNSS, remote sensing of the troposphere in Europe is performed continuously and operationally under the E-GVAP (http://egvap.dmi.dk/) program with more than 2000 permanent stations. These data are one of the assimilation system component of mesoscale weather prediction models (10 km scale) for many nations across Europe. However, advancing precise local forecasts for severe weather requires high resolution models and observing system.   Further densification of the tracking network, e.g. in urban or mountain areas, will be costly when considering geodetic-grade equipment. However, the rapid development of GNSS-based applications results in a dynamic release of mass-market GNSS receivers. It has been demonstrated that post-processing of GPS-data from a dual-frequency low-cost receiver allows retrieving ZTD with high accuracy. Although low-cost receivers are a promising solution to the problem of densifying GNSS networks for water vapor monitoring, there are still some technological limitations and they require further development and calibration.</p><p>We have developed a low-cost GNSS station, dedicated to real-time GNSS meteorology, which provides GPS, GLONASS and Galileo dual-frequency observations either in RINEX v3.04 format or via RTCM v3.3 stream, with either Ethernet or GSM data transmission. The first two units are deployed in a close vicinity of permanent station WROC, which belongs to the International GNSS Service (IGS) network. Therefore, we compare results from real-time and near real-time processing of GNSS observations from a low-cost unit with IGS Final products. We also investigate the impact of replacing a standard patch antenna with an inexpensive survey-grade antenna. Finally, we deploy a local network of low-cost receivers in and around the city of Wroclaw, Poland, in order to analyze the dynamics of troposphere delay at a very high spatial resolution.</p><p>As a measure of accuracy, we use the standard deviation of ZTD differences between estimated ZTD and IGS Final product. For the near real-time mode, that accuracy is 5 mm and 6 mm, for single- (L1) and dual-frequency (L1/L5,E5b) solution, respectively. Lower accuracy of the dual-frequency relative solution we justify by the missing antenna phase center correction model for L5 and E5b frequencies. With the real-time Precise Point Positioning technique, we estimate ZTD with the accuracy of 7.5 – 8.6 mm. After antenna replacement, the accuracy is improved almost by a factor of 2 (to 4.1 mm), which is close to the 3.1 mm accuracy which we obtain in real-time using data from the WROC station.</p>


2021 ◽  
Author(s):  
Estel Cardellach ◽  
Weiqiang Li ◽  
Dallas Masters ◽  
Takayuki Yuasa ◽  
Franck Borde ◽  
...  

<p>Recently, different studies have shown evidence of signals transmitted by the Global Navigation Satellite Systems (GNSS), coherently reflected over some parts of the ocean, and received from cubesats. In particular, strong coherent scattering has been reported in regions with low water surface roughness as those near continental masses and in atolls. Over open ocean, few coherent signals were reported to be found, although the data sets were somewhat limited and certainly not exhaustive. The level of coherence in reflected GNSS signals depends on the roughness of the  surface (i.e. significant wave height and small scale ripples and waves induced by the wind), the viewing geometry (i.e. incidence angle, or equivalently, elevation angle of the GNSS satellite as seen from the point of reflection), propagation effects (namely ionospheric disturbances) and on the frequency (i.e. particular GNSS band, like L1/E1, L2 or L5/E5). These coherent measurements over ocean follow earlier evidence of coherent GNSS reflections over sea ice which date back to 2005, the time of UK-DMC mission. More recently, Sea Ice Thickness (SIT) retrievals have also been carried out with this technique, at an accuracy comparable to that of SMOS.</p><p>All the observations referred so far were done at a single frequency, L1/E1. So, there is an interest to explore the coherence at the other main GNSS bands, i.e. L2 and L5/E5 as well as to the widelane combinations between them (linear combinations of carrier-phase measurements, of longer effective wavelength). Spire Global radio occultation cubesats work at L1 and L2 frequency bands, and therefore provide unique dual-frequency raw data sets of reflected signals over open ocean, sea ice and inland water bodies. With these, it is possible to study the coherence of these targets at each of the bands and at their widelane combination, as well as the performance of altimetric retrievals at grazing angles of observation (very slant geometries, which facilitate coherence properties of the scattering). The dual-frequency observations can correct the ionospheric effects, and their widelane combinations, of longer effective wavelength, might expand the conditions for coherence. The fact that this new approach is fully compatible with small GNSS radio occultation payloads and missions, might represent a low cost source of precise altimetry to complement larger dedicated missions.</p><p>An ESA research study involving Spire Global and IEEC aims at studying this new potential altimetric technique. Raw data acquisitions from limb-looking antennas of Spire’s cubesat constellation were selected to be geographically and time collocated with ESA Sentinel 3A and 3B passes in order to compare the results of coherence and altimetry. For this study, the raw data at two frequencies, acquired at 6.2 Mbps, are shifted to intermediate frequencies and downloaded to the ground without any further processing. In-house software receivers are then applied to generate the reflected echoes or waveforms, and to track the phase of the carrier signals. Precise altimetry (a few cm in 20 ms integration) is then possible from these observables. The results of this activity will be shown, focusing on altimetric retrievals over large lakes.</p>


Sign in / Sign up

Export Citation Format

Share Document