scholarly journals Determination of orthometric elevations using gnss-derived height with the egm2008 geoid height model

2017 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Emmanuel Menegbo

The Global navigation satellite systems (GNSS) has imparted positively on civilian positioning & surveying in the horizontal component in Nigeria for the past two decades. The GNSS receivers’ data are longitude, latitude & elevation. However, the vertical distance measurement have not been fully exploited by geodetic and land surveyors. The GNSS derived heights are ellipsoidal elevation. To convert the GNSS elevation to orthometric heights, a geoidal elevation models is needed. The Earth Gravitational Model, 2008 (EGM2008) is a global geoidal models that can be used to obtain GNSS orthometric heights by defining the relationship with the ellipsoid. This work determines GNSS-derived orthometric heights with ellipsoid-geoidal relationship using GPS ellipsoidal heights and EGM2008 geoidal model GIS data. The EGM2008 GIS data was downloaded and interpolated with GPS data to obtain geoidal heights using ArcGIS 10.1. GNSS-derived heights determined with geoid-ellipsoid relationship formula. The result shows minimum elevation of -2.37599m and maximum elevation of 53.8566m.The derived orthometric heights use to create a model in raster format. The orthometric elevation models created useful in all vertical surveying work, construction work and urban planning. The GNSS orthometric heights models need to be compare with spirit levelling and the local geoidal model determined for improve accuracy.

2012 ◽  
Vol 9 ◽  
pp. 63-76 ◽  
Author(s):  
Michal Kačmařík ◽  
Lukáš Rapant

Paper is focused on GNSS meteorology which is generally used for the determination of water vapour distribution in the atmosphere from GNSS measurements. Water vapour in the atmosphere is an important parameter which influences the state and development of the weather. At first, the paper presents basics of the GNSS meteorology and tomography of the atmosphere and subsequently introduces a new GNSS tomography method which doesn't require an extensive network of GNSS receivers, but uses only a few receivers situated in a line. After a theoretical concept describing this method and used mathematical background, the results from a real experiment are shown and discussed. Unfortunately the results indicate that presented method is not able to provide credible outputs. Possibly the main problem lies in an insufficient number of available signals from current global navigation satellite systems (GPS and GLONASS) where the improvement could be expected after the start of Galileo and Compass. Potential ways how to improve the results without increasing the number of satellites are outlined in the last section.


2018 ◽  
Vol 12 (4) ◽  
pp. 323-333
Author(s):  
Su-Kyung Kim ◽  
Jihye Park ◽  
Daniel Gillins ◽  
Michael Dennis

Abstract Leveling is a traditional geodetic surveying technique that has been used to realize a vertical datum. However, this technique is time consuming and prone to accumulate errors, where it relies on starting from one station with a known orthometric height. Establishing orthometric heights using Global Navigation Satellite Systems (GNSS) and a geoid model has been suggested [14], but this approach may involve less precisions than the direct measurements from leveling. In this study, an experimental study is presented to adjust the highly accurate leveling observations along with orthometric heights derived from GNSS observations and a geoid model. For the geoid model, the National Geodetic Survey’s gravimetric geoid model (TxGEOID16B) and hybrid geoid model (GEOID12B) were applied. Uncertainties in the leveled height differences, GNSS derived heights, and the geoid models were modeled, and a combined adjustment was implemented to construct the optimal combination of orthometric, ellipsoidal, and geoid height at each mark. As a result, the discrepancy from the published orthometric heights and the CSM (Corrector Surface Model) based adjusted orthometric heights with GEOID12B showed a mean and RMS of -8.5 mm and 16.6 mm, respectively, while TxGEOID16B had a mean and RMS of 28.9 mm and 34.6 mm, respectively. It should be emphasized that this approach was not influenced by the geodetic distribution of the stations where the correlation coefficients between the distance from the center of the surveying network and the discrepancy from the published heights using TxGEOID16B and GEOID12B are 0.03 and 0.36, respectively.


Author(s):  
Oleg Odalović ◽  
Danilo Joksimović ◽  
Dušan Petković ◽  
Marko Stanković ◽  
Sanja Grekulović

Within this paper, we evaluated the quality of three Global Geopotential Models entitled: EGM96,EGM2008, and GOCO05c. The models were evaluated by using 1001 terrestrial discrete values ofheight anomalies determined by Global Navigation Satellite Systems and normal heights, which weconsidered to be true values within this research. In addition to the quality evaluation, we tailoredthe models by using more than 80000 free air anomalies. The results obtained from the evaluationand tailoring indicate that by using the GOCO05c it is possible to determine a set of anomaly heightsacross Serbia, which are in agreement with terrestrial values with an average value of -7 cm, thestandard deviation of ±9 cm and with the range of 44 cm.


2021 ◽  
Vol 13 (22) ◽  
pp. 4525
Author(s):  
Junjie Zhang ◽  
Kourosh Khoshelham ◽  
Amir Khodabandeh

Accurate and seamless vehicle positioning is fundamental for autonomous driving tasks in urban environments, requiring the provision of high-end measuring devices. Light Detection and Ranging (lidar) sensors, together with Global Navigation Satellite Systems (GNSS) receivers, are therefore commonly found onboard modern vehicles. In this paper, we propose an integration of lidar and GNSS code measurements at the observation level via a mixed measurement model. An Extended Kalman-Filter (EKF) is implemented to capture the dynamic of the vehicle movement, and thus, to incorporate the vehicle velocity parameters into the measurement model. The lidar positioning component is realized using point cloud registration through a deep neural network, which is aided by a high definition (HD) map comprising accurately georeferenced scans of the road environments. Experiments conducted in a densely built-up environment show that, by exploiting the abundant measurements of GNSS and high accuracy of lidar, the proposed vehicle positioning approach can maintain centimeter-to meter-level accuracy for the entirety of the driving duration in urban canyons.


Author(s):  
Zbigniew Siejka

The main aim of this work is research on the use of satellite positioning GNSS – RTK / RTN techniques to estimate the trajectory of a hydrographic boat. Modern hydrographic boat is the carrier of advanced bathymetry system, integral with GNSS positioning techniques. The key elements of the correct execution of the hydroacoustic survey are two elements: the height of the water surface and precise determination of the position in the moment of performing depth measurement. Integrated Bathymetric System (ZSB) is installed on a floating platform which is in constant motion. To obtain correct results of the hydroacoustic survey, it is necessary to know the precise (3D) position of the platform. In this paper the author presented his own research on the precise determination of accurate and reliable trajectory of a boat. The proposed method uses Real Time Kinematic (RTK) techniques of satellite positioning GNSS (Global Navigation Satellite Systems). The article presents examples of the results obtained during the research work at the largest Polish river.


2009 ◽  
Vol 5 (H15) ◽  
pp. 216-216
Author(s):  
Harald Schuh ◽  
Johannes Boehm ◽  
Sigrid Englich ◽  
Axel Nothnagel

AbstractVery Long Baseline Interferometry (VLBI) is the only space geodetic technique which is capable of estimating the Earth's phase of rotation, expressed as Universal Time UT1, over time scales of a few days or longer. Satellite-observing techniques like the Global Navigation Satellite Systems (GNSS) are suffering from the fact that Earth rotation is indistinguishable from a rotation of the satellite orbit nodes, which requires the imposition of special procedures to extract UT1 or length of day information. Whereas 24 hour VLBI network sessions are carried out at about three days per week, the hour-long one-baseline intensive sessions (‘Intensives’) are observed from Monday to Friday (INT1) on the baseline Wettzell (Germany) to Kokee Park (Hawaii, U.S.A.), and from Saturday to Sunday on the baseline Tsukuba (Japan) to Wettzell (INT2). Additionally, INT3 sessions are carried out on Mondays between Wettzell, Tsukuba, and Ny-Alesund (Norway), and ultra-rapid e-Intensives between E! urope and Japan also include the baseline Metsähovi (Finland) to Kashima (Japan). The Intensives have been set up to determine daily estimates of UT1 and to be used for UT1 predictions. Because of the short duration and the limited number of stations the observations can nowadays be e-transferred to the correlators, or to a node close to the correlator, and the estimates of UT1 are available shortly after the last observation thus allowing the results to be used for prediction purposes.


2018 ◽  
Vol 67 (1) ◽  
pp. 65-72
Author(s):  
Grzegorz Czopik ◽  
Tomasz Kraszewski

The GNSS (GNSS — Global Navigation Satellite Systems) receivers can be utilized to obtain accurate time markers. The preliminary results of the cheap GNSS receivers’ tests are presented in the paper. The one receiver’s price (including antenna) does not exceed 30 $. The studies on the use of receivers in the time synchronization systems were executed. Three identical models of receiver modules were used. The 1PPS (1PPS — 1 Pulse Per Second) signals available on the receiver’s output were used. The 1PPS’s main time characteristics were described. Delay times between different receivers 1PPS signals were measured. Measurements were taken using 1 GHz oscilloscope and precise time/frequency counter T3200U. Keywords: time synchronization, 1PPS, GNSS, GPS time


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1405
Author(s):  
Qiuying Wang ◽  
Kaiyue Liu ◽  
Zhiguo Sun ◽  
Muchun Cai ◽  
Ming Cheng

Foot-mounted inertial pedestrian positioning (FIPP) plays an important role for facilitating pedestrian activities. It is suitable for indoor environment applications where global navigation satellite systems are unavailable such as during firefighting and military actions. However, the positioning error of FIPP can increase rapidly due to the measurement noise of the sensors. Zero Velocity Update (ZUPT) is an error correction method proposed to solve this accumulative error. However, the heading misalignment angle, which results in a continuous increase in the positioning error, cannot be estimated by ZUPT. In order to solve this problem, the improved ZUPT based on the Improved Attitude Algorithm (IAA) according to accelerometer measurements is proposed in this paper. When a pedestrian is in the stance phase, the horizontal attitude is estimated by using accelerometer measurements. According to the relationship between the heading misalignment angle and horizontal attitude, the heading misalignment angle is obtained by a series of mathematical derivations. By taking the velocity error and the attitude misalignment angle as observations, the heading misalignment angle and positioning error can be estimated and compensated for through the Kalman filter. Finally, we use MTI-G710 sensor manufactured by XSENS for the actual test and the experiment results show that the proposed method is effectively correct.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1768
Author(s):  
Chris Danezis ◽  
Miltiadis Chatzinikos ◽  
Christopher Kotsakis

Permanent Global Navigation Satellite Systems (GNSS) reference stations are well established as a powerful tool for the estimation of deformation induced by man-made or physical processes. GNSS sensors are successfully used to determine positions and velocities over a specified time period, with unprecedented accuracy, promoting research in many safety-critical areas, such as geophysics and geo-tectonics, tackling problems that torment traditional equipment and providing deformation products with absolute accuracy. Cyprus, being located at the Mediterranean fault, exhibits a very interesting geodynamic regime, which has yet to be investigated thoroughly. Accordingly, this research revolves around the estimation of crustal deformation in Cyprus using GNSS receivers. CYPOS (CYprus POsitioning System), a network of seven permanent GNSS stations has been operating since 2008, under the responsibility of the Department of Lands and Surveys. The continuous flow of positioning data collected over this network, offers the required information to investigate the behavior of the crustal deformation field of Cyprus using GNSS sensors for the first time. This paper presents the results of a multi-year analysis (11/2011–01/2017) of daily GNSS data and provides inferences of linear and nonlinear deforming signals into the position time series of the network stations. Specifically, 3D station velocities and seasonal periodic displacements are jointly estimated and presented via a data stacking approach with respect to the IGb08 reference frame.


Sign in / Sign up

Export Citation Format

Share Document