Validating the impact of various ionosphere correction on mid to long baselines and point positioning using GPS dual-frequency receivers

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alaa A. Elghazouly ◽  
Mohamed I. Doma ◽  
Ahmed A. Sedeek

Abstract Due to the ionosphere delay, which has become the dominant GPS error source, it is crucial to remove the ionospheric effect before estimating point coordinates. Therefore, different agencies started to generate daily Global Ionosphere Maps (GIMs); the Vertical Total Electron Content (VTEC) values represented in GIMs produced by several providers can be used to remove the ionosphere error from observations. In this research, An analysis will be carried with three sources for VTEC maps produced by the Center for Orbit Determination in Europe (CODE), Regional TEC Mapping (RTM), and the International Reference Ionosphere (IRI). The evaluation is focused on the effects of a specific ionosphere GIM correction on the precise point positioning (PPP) solutions. Two networks were considered. The first network consists of seven Global Navigation Satellite Systems (GNSS) receivers from (IGS) global stations. The selected test days are six days, three of them quiet, and three other days are stormy to check the influence of geomagnetic storms on relative kinematic positioning solutions. The second network is a regional network in Egypt. The results show that the calculated coordinates using the three VTEC map sources are far from each other on stormy days rather than on quiet days. Also, the standard deviation values are large on stormy days compared to those on quiet days. Using CODE and RTM IONEX file produces the most precise coordinates after that the values of IRI. The elimination of ionospheric biases over the estimated lengths of many baselines up to 1000 km has resulted in positive findings, which show the feasibility of the suggested assessment procedure.

2020 ◽  
Author(s):  
Teng Liu ◽  
Baocheng Zhang ◽  
Yunbin Yuan ◽  
Xiao Zhang

<p>The ionospheric delay accounts for one of the major errors that the Global Navigation Satellite Systems (GNSS) suffer from. Hence, the ionosphere Vertical Total Electron Content (VTEC) map has been an important atmospheric product within the International GNSS Service (IGS) since its early establishment. In this contribution, an enhanced method has been proposed for the modeling of the ionosphere VTECs. Firstly, to cope with the rapid development of the newly-established Galileo and BeiDou constellations in recent years, we extend the current dual-system (GPS/GLONASS) solution to a quad-system (GPS/GLONASS/Galileo/BeiDou) solution. More importantly, instead of using dual-frequency observations based on the Carrier-to-Code Leveling (CCL) method, all available triple-frequency signals are utilized with a general raw-observation-based multi-frequency Precise Point Positioning (PPP) model, which can process dual-, triple- or even arbitrary-frequency observations compatibly and flexibly. Benefiting from this, quad-system slant ionospheric delays can be retrieved based on multi-frequency observations in a more flexible, accurate and reliable way. The PPP model has been applied in both post-processing global and real-time regional VTEC modeling. Results indicate that with the improved slant ionospheric delays, the corresponding VTEC models are also improved, comparing with the traditional CCL method.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 439 ◽  
Author(s):  
Xiangdong An ◽  
Xiaolin Meng ◽  
Hua Chen ◽  
Weiping Jiang ◽  
Ruijie Xi ◽  
...  

With the emergence of BeiDou and Galileo as well as the modernization of GPS and GLONASS, more available satellites and signals enhance the capability of Global Navigation Satellite Systems (GNSS) to monitor the ionosphere. However, currently the International GNSS Service (IGS) Ionosphere Associate Analysis Centers (IAACs) just use GPS and GLONASS dual-frequency observations in ionosphere estimation. To better determine the global ionosphere, we used multi-frequency, multi-constellation GNSS observations and a priori International Reference Ionosphere (IRI) to model the ionosphere. The newly estimated ionosphere was represented by a spherical harmonic expansion function with degree and order of 15 in a solar-geomagnetic frame. By collecting more than 300 stations with a global distribution, we processed and analysed two years of data. The estimated ionospheric results were compared with those of IAACs, and the averaged Root Mean Squares (RMS) of Total Electron Content (TEC) differences for different solutions did not exceed 3 TEC Unit (TECU). Through validation by satellite altimetry, it was suggested that the newly established ionosphere had a higher precision than the IGS products. Moreover, compared with IGS ionospheric products, the newly established ionosphere showed a more accurate response to the ionosphere disturbances during the geomagnetic storms.


2020 ◽  
Vol 12 (14) ◽  
pp. 2200
Author(s):  
Chao Gao ◽  
Shuanggen Jin ◽  
Liangliang Yuan

Geomagnetic storms are extreme space weather events, which have considerable impacts on the ionosphere and power transmission systems. In this paper, the ionospheric responses to the geomagnetic storm on 22 June 2015, are analyzed from ground-based and satellite-based Global Navigation Satellite System (GNSS) observations as well as observational data of digital ionosondes, and the main physical mechanisms of the ionospheric disturbances observed during the geomagnetic storm are discussed. Salient positive and negative storms are observed from vertical total electron content (VTEC) based on ground-based GNSS observations at different stages of the storm. Combining topside observations of Low-Earth-Orbit (LEO) satellites (GRACE and MetOp satellites) with different orbital altitudes and corresponding ground-based observations, the ionospheric responses above and below the orbits are studied during the storm. To obtain VTEC from the slant TEC between Global Positioning System (GPS) and LEO satellites, we employ a multi-layer mapping function, which can effectively reduce the overall error caused by the single-layer geometric assumption where the horizontal gradient of the ionosphere is not considered. The results show that the topside observations of the GRACE satellite with a lower orbit can intuitively detect the impact caused by the fluctuation of the F2 peak height (hmF2). At the same time, the latitude range corresponding to the peak value of the up-looking VTEC on the event day becomes wider, which is the precursor of the Equatorial Ionization Anomaly (EIA). However, no obvious response is observed in the up-looking VTEC from MetOp satellites with higher orbits, which indicates that the VTEC responses to the geomagnetic storm mainly take place below the orbit of MetOp satellites.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Manuel Bravo ◽  
Carlos Villalobos ◽  
Rodrigo Leiva ◽  
Luis Tamblay ◽  
Pedro Vega-Jorquera ◽  
...  

Objective: The diurnal variations of several ionospheric characteristics during the Space Weather Events of 4-10 September 2017, for Chilean latitudes, will be reported. Materials and Methods: Observations were made using a recently installed ionosonde at the Universidad de La Serena field station (29°52'S; 71°15’W). Also, reported is the total electron content determined using the upgraded Chilean network of dual-frequency Global Navigation Satellite Systems (GNSS) receivers. Results: Sudden ionospheric disturbances are described in terms of the minimum reflection frequency determined from ionosonde records. An attempt to derive the extent of the effect on high frequency propagation paths in the region is made using simultaneous ionosonde observations at other locations. The geomagnetic storm ionospheric effects are discussed in detail using the observed diurnal variation of maximum electron concentration (NmF2), virtual height of the F-region (h’F/F2) and Total Electron Content (TEC). These are complemented with the time-latitude variation of TEC for the 70°W meridian. Conclusion: It is found that large increases of NmF2, h’F/F2 and TEC observed during 8 September 2017 storm are well described in terms of the evolution of the Equatorial Ionospheric Anomaly (EIA) over the same time interval. Known physical mechanisms are suggested to explain most of the observations.


2020 ◽  
Vol 196 ◽  
pp. 01001
Author(s):  
Anna Yasyukevich ◽  
Semen Syrovatskii ◽  
Yury Yasyukevich

Based on the data from dual-frequency receivers of global navigation satellite systems (GNSS), we analyze the changes in GNSS positioning accuracy during the August 25-26, 2018 strong geomagnetic storm on a global scale. The storm is one of the strongest geomagnetic events of the solar cycle 24. To analyze the positioning quality, we calculated coordinates using the precise point positioning (PPP) method in the kinematic mode. We recorder a significant degradation in the PPP positioning accuracy during the main phase of the storm. The maximum effect is observed in the middle and high latitudes of the US-Atlantic longitude sector. The average PPP error during the storm is shown to exceed ~0.5 m, that is up to 5 times higher than the values typical on quiet days. Areas with increased PPP errors is revealed to correspond to the regions with significant increase in the intensity of total electron content variations of 10–20 min period range. This increase is presumably due to the auroral oval expansion toward middle latitudes.


2020 ◽  
Author(s):  
Nicolas Bergeot ◽  
John Bosco Habarulema ◽  
Jean-Marie Chevalier ◽  
Tshimangadzo Matamba ◽  
Elisa Pinat ◽  
...  

<p>An increasing demand for a better modelling and understanding of the Ionosphere-Plasmasphere system (I/Ps) is required for both scientific and public practical applications using electromagnetic wave signals reflecting on or passing through this layer. This is the case for the Global Navigation Satellite Systems (GNSS, i.e. GPS, GLONASS, Galileo) and for spacecraft designers and operators who need to have a precise knowledge of the electron density distribution.</p><p>Additionally, despite the long-term ionospheric studies that have been on-going for many decades, a number of aspects are still complicated to understand and forecast accurately even in mid-latitude regions during quiet conditions. Performing inter-hemispherical climatological studies in European and South African regions should highlight differences/similarities in I/Ps response during different phases of solar activity and geophysical conditions.</p><p>In that frame, the Royal Observatory of Belgium (ROB) and the South African National Space Agency (SANSA) started a collaboration named “Interhemispheric Comparison of the Ionosphere-Plasmasphere System” (BEZA-COM). The goal is to provide inter-hemispheric comparison of the I/Ps implying: (1) a characterization of the climatological behavior of the Total Electron Content (TEC) in the I/Ps, over European, South African, Arctic and Antarctica regions; (2) an identification of the mechanisms that regulate inter-hemispheric differences, asymmetries and commonalities in the I/Ps from low to high-latitudes, (3) study of the different responses of the I/Ps during extreme solar events and induced geomagnetic storms in the two hemispheres.</p><p>In this paper, we reprocessed the GNSS data (GPS+GLONASS) of the dense EUREF Permanent GNSS Network (EPN) and South African TRIGNET networks as well as IGS stations for the period 1998-2018. The output consists in vertical Total Electron Content (vTEC), estimated every 15 min., and covering the central European and South African regions. The vTEC is then extracted at two conjugated locations and used to constrain empirical models to highlight the climatological behavior of the ionospheric vTEC over Europe and South Africa. From the results, we will show that the differences are quite significant. To give first answers on these differences, we also compared these models with ionosondes long-term data based models (for foF2 and hmF2) at two conjugated locations (Grahamstown and Průhonice) as well as long-term NRLMSISE O/N<sub>2</sub> ratio.</p>


2020 ◽  
Vol 12 (20) ◽  
pp. 3354
Author(s):  
Yang Wang ◽  
Yibin Yao ◽  
Liang Zhang ◽  
Mingshan Fang

Ionospheric delay is a crucial error source and determines the source of single-frequency precise point positioning (SF-PPP) accuracy. To meet the demands of real-time SF-PPP (RT-SF-PPP), several international global navigation satellite systems (GNSS) service (IGS) analysis centers provide real-time global ionospheric vertical total electron content (VTEC) products. However, the accuracy distribution of VTEC products is nonuniform. Proposing a refinement method is a convenient means to obtain a more accuracy and consistent VTEC product. In this study, we proposed a refinement method of a real-time ionospheric VTEC model for China and carried out experiments to validate the model effectiveness. First, based on the refinement method and the Centre National d’Études Spatiales (CNES) VTEC products, three refined real-time global ionospheric models (RRTGIMs) with one, three, and six stations in China were built via GNSS observations. Second, the slant total electron content (STEC) and Jason-3 VTEC were used as references to evaluate VTEC accuracy. Third, RT-SF-PPP was used to evaluate the accuracy in the positioning domain. Results showed that even if using only one station to refine the global ionospheric model, the refined model achieved a better performance than CNES and the Center for Orbit Determination in Europe (CODE). The refinement model with six stations was found to be the best of the three refinement models.


2021 ◽  
Vol 13 (23) ◽  
pp. 4753
Author(s):  
Louis Osei-Poku ◽  
Long Tang ◽  
Wu Chen ◽  
Chen Mingli

Total Electron Content (TEC) from Global Navigation Satellite Systems (GNSS) is used to ascertain the impact of space weather events on navigation and communication systems. TEC is detrended by several methods to show this impact. Information from the detrended TEC may or may not necessarily represent a geophysical parameter. In this study, two commonly used detrending methods, Savitzky–Golay filter and polynomial fitting, are evaluated during thunderstorm events in Hong Kong. A two-step approach of detection and distinguishing is introduced alongside linear correlation in order to determine the best detrending model. Savitzky–Golay filter on order six and with a time window length of 120 min performed the best in detecting lightning events, and had the highest moderate positive correlation of 0.4. That the best time frame was 120 min suggests that the observed disturbances could be travelling ionospheric disturbance (TID), with lightning as the potential source.


2021 ◽  
Vol 68 (1) ◽  
pp. 1-25
Author(s):  
Sumitra Iyer ◽  
Alka Mahajan

AbstractThe total electron content (TEC) in the ionosphere widely influences Global Navigation Satellite Systems (GNSS) especially for critical applications by inducing localized positional errors in the GNSS measurements. These errors can be mitigated by measuring TEC from stations located around the world at various temporal and spatial scales and using them for advanced forecasting of TEC. The TEC can be used as a tool in understanding space weather phenomena such as geomagnetic storms which cause disruptions in the ionosphere. This paper examines the causal relationship between perturbations in TEC caused by geomagnetic storms. The causality between two geomagnetic indices auroral electrojet (AE) and disturbed storm index (Dst) and TEC is investigated using Granger causality at two low-latitude stations, Bangalore and Hyderabad. The outcomes of this study strengthen the regional understanding and modeling of ionospheric parameters which can contribute towards the global efforts for modeling and reducing the ionospheric effects on trans-ionospheric communication and navigation. The causal inferences combined with the data-driven model can be useful in identifying the correct and informative physical quantities to improve the forecasting models.


2020 ◽  
Vol 12 (15) ◽  
pp. 2467
Author(s):  
Stefan Schlüter ◽  
Mohammed Mainul Hoque

The next generation of satellite-based augmentation systems (SBAS) will support aviation receivers that take advantage of the ionosphere-free dual-frequency combination. By combining signals of the L1 and L5 bands, about 99% of the ionospheric refraction effects on the GNSS (Global Navigation Satellite Systems) signals can be removed in the user receivers without additional SBAS corrections. Nevertheless, even if most of the negative impacts on GNSS signals are removed by the ionospheric-free combination, some residuals remain and have to be taken into account by overbounding models in the integrity computation conducted by safety-of-live (SoL) receivers in airplanes. Such models have to overbound residuals as well, which result from the most rare extreme ionospheric events, e.g., such as the famous “Halloween Storm”, and should thus include the tails of the error distribution. Their application shall lead to safe error bounds on the user position and allow the computation of protection levels for the horizontal and vertical position errors. Here, we propose and justify such an overbounding model for residual ionospheric delays that remain after the application of the ionospheric-free linear combination. The model takes into account second- and third-order ionospheric refraction effects, excess path due to ray bending, and increased ionospheric total electron content (TEC) along the signal path due to ray bending.


Sign in / Sign up

Export Citation Format

Share Document