scholarly journals Changes in the GNSS precise point positioning accuracy during a strong geomagnetic storm

2020 ◽  
Vol 196 ◽  
pp. 01001
Author(s):  
Anna Yasyukevich ◽  
Semen Syrovatskii ◽  
Yury Yasyukevich

Based on the data from dual-frequency receivers of global navigation satellite systems (GNSS), we analyze the changes in GNSS positioning accuracy during the August 25-26, 2018 strong geomagnetic storm on a global scale. The storm is one of the strongest geomagnetic events of the solar cycle 24. To analyze the positioning quality, we calculated coordinates using the precise point positioning (PPP) method in the kinematic mode. We recorder a significant degradation in the PPP positioning accuracy during the main phase of the storm. The maximum effect is observed in the middle and high latitudes of the US-Atlantic longitude sector. The average PPP error during the storm is shown to exceed ~0.5 m, that is up to 5 times higher than the values typical on quiet days. Areas with increased PPP errors is revealed to correspond to the regions with significant increase in the intensity of total electron content variations of 10–20 min period range. This increase is presumably due to the auroral oval expansion toward middle latitudes.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Baocheng Zhang ◽  
Chuanbao Zhao ◽  
Robert Odolinski ◽  
Teng Liu

AbstractPrecise Point Positioning (PPP), initially developed for the analysis of the Global Positing System (GPS) data from a large geodetic network, gradually becomes an effective tool for positioning, timing, remote sensing of atmospheric water vapor, and monitoring of Earth’s ionospheric Total Electron Content (TEC). The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP. In this contribution, it is shown this assumption is not always valid and can lead to the degradation of PPP performance, especially for Slant TEC (STEC) retrieval and timing. For this reason, the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies. It is different from the Modified Carrier-to-Code Leveling (MCCL) method which can only obtain the variations of Receiver Differential Code Biases (RDCBs), i.e., the difference between the two frequencies’ code biases. In the Modified PPP (MPPP) model, the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters, such as ambiguity parameters, receiver clock offsets, and ionospheric delays, are mitigated. This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations. The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature. With the modified functional model, an improvement by 42% to 96% is achieved in the Differences of STEC (DSTEC) compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free (GF) carrier phase observations. The medium and long term (1 × 104 to 1.5 × 104 s) frequency stability of receiver clocks are also significantly improved.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alaa A. Elghazouly ◽  
Mohamed I. Doma ◽  
Ahmed A. Sedeek

Abstract Due to the ionosphere delay, which has become the dominant GPS error source, it is crucial to remove the ionospheric effect before estimating point coordinates. Therefore, different agencies started to generate daily Global Ionosphere Maps (GIMs); the Vertical Total Electron Content (VTEC) values represented in GIMs produced by several providers can be used to remove the ionosphere error from observations. In this research, An analysis will be carried with three sources for VTEC maps produced by the Center for Orbit Determination in Europe (CODE), Regional TEC Mapping (RTM), and the International Reference Ionosphere (IRI). The evaluation is focused on the effects of a specific ionosphere GIM correction on the precise point positioning (PPP) solutions. Two networks were considered. The first network consists of seven Global Navigation Satellite Systems (GNSS) receivers from (IGS) global stations. The selected test days are six days, three of them quiet, and three other days are stormy to check the influence of geomagnetic storms on relative kinematic positioning solutions. The second network is a regional network in Egypt. The results show that the calculated coordinates using the three VTEC map sources are far from each other on stormy days rather than on quiet days. Also, the standard deviation values are large on stormy days compared to those on quiet days. Using CODE and RTM IONEX file produces the most precise coordinates after that the values of IRI. The elimination of ionospheric biases over the estimated lengths of many baselines up to 1000 km has resulted in positive findings, which show the feasibility of the suggested assessment procedure.


2015 ◽  
Vol 55 (2) ◽  
pp. 605-616 ◽  
Author(s):  
I. Rodríguez-Bilbao ◽  
B. Moreno Monge ◽  
G. Rodríguez-Caderot ◽  
M. Herraiz ◽  
S.M. Radicella

GEOMATICA ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 253-257 ◽  
Author(s):  
Mahmoud Abd El-Rahman ◽  
Ahmed El-Rabbany

Geodetic-grade dual-frequency GPS receivers are typically used for precise point positioning (PPP). Unfortunately, these receiver systems are expensive and may not provide a cost-effective solution in many instances. The use of low-cost single-frequency GPS receivers, on the other hand, are limited by the effect of ionospheric delay. A number of mitigation techniques have been proposed to account for the effect of ionospheric delay for single-frequency GPS users. Unfortunately, however, those mitigation techniques are not suitable for PPP. More recently, the U.S. Total Electron Content (USTEC) product has been developed by the National Oceanic and Atmospheric Administration (NOAA), which describes the ionospheric total electron content in high resolution over most of North America. This paper investigates the performance of USTEC and studies its effect on single-frequency PPP solution. A performance comparison with two widely-used ionospheric mitigation models is also presented.


2021 ◽  
Vol 13 (24) ◽  
pp. 5093
Author(s):  
Ke Su ◽  
Shuanggen Jin

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) enables the estimation the ionospheric vertical total electron content (VTEC) as well as the by-product of the satellite Pseudorange observable-specific signal bias (OSB). The single-frequency PPP models, with the ionosphere-float and ionosphere-free approaches in ionospheric studies, have recently been discussed by the authors. However, the multi-frequency observations can improve the performances of the ionospheric research compared with the single-frequency approaches. This paper presents three dual-frequency PPP approaches using the BeiDou Navigation Satellite System (BDS) B1I/B3I observations to investigate ionospheric activities. Datasets collected from the globally distributed stations are used to evaluate the performance of the ionospheric modeling with the ionospheric single- and multi-layer mapping functions (MFs), respectively. The characteristics of the estimated ionospheric VTEC and BDS satellite pseudorange OSB are both analyzed. The results indicated that the three dual-frequency PPP models could all be applied to the ionospheric studies, among which the dual-frequency ionosphere-float PPP model exhibits the best performance. The three dual-frequency PPP models all possess the capacity for ionospheric applications in the GNSS community.


Author(s):  
D. Pandey ◽  
R. Dwivedi ◽  
O. Dikshit ◽  
A. K. Singh

With the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs), satellite navigation is undergoing drastic changes. Presently, more than 70 satellites are already available and nearly 120 more satellites will be available in the coming years after the achievement of complete constellation for all four systems- GPS, GLONASS, Galileo and BeiDou. The significant improvement in terms of satellite visibility, spatial geometry, dilution of precision and accuracy demands the utilization of combining multi-GNSS for Precise Point Positioning (PPP), especially in constrained environments. Currently, PPP is performed based on the processing of only GPS observations. Static and kinematic PPP solutions based on the processing of only GPS observations is limited by the satellite visibility, which is often insufficient for the mountainous and open pit mines areas. One of the easiest options available to enhance the positioning reliability is to integrate GPS and GLONASS observations. This research investigates the efficacy of combining GPS and GLONASS observations for achieving static PPP solution and its sensitivity to different processing methodology. Two static PPP solutions, namely standalone GPS and combined GPS-GLONASS solutions are compared. The datasets are processed using the open source GNSS processing environment <i>gLAB</i> 2.2.7 as well as <i>magicGNSS</i> software package. The results reveal that the addition of GLONASS observations improves the static positioning accuracy in comparison with the standalone GPS point positioning. Further, results show that there is an improvement in the three dimensional positioning accuracy. It is also shown that the addition of GLONASS constellation improves the total number of visible satellites by more than 60% which leads to the improvement of satellite geometry represented by Position Dilution of Precision (PDOP) by more than 30%.


GEOMATICA ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

Single-frequency precise point positioning (PPP) presents a cost-effective positioning technique for a large number of users. However, it possesses low positioning accuracy and convergence time compared with the dual-frequency PPP. Single-frequency PPP commonly employs GPS satellite systems that suffer from poor satellite geometry, especially in dense urban areas. We develop a new single-frequency PPP model that combines the observations of current GNSS constellations, including GPS, GLONASS, Galileo and Beidou. The MGEX IGS final precise products are utilized to account for the orbital and clock errors, while the IGS final global ionospheric maps (GIM) model is used to correct for the ionospheric delay. The GNSS inter-system biases are treated as additional unknowns in the estimation process. The con tri bution of the additional GNSS observations to single-frequency PPP is assessed through solution comparison with its traditional GPS-only counterpart. Various GNSS combinations are considered in the assessment, including GPS/GLONASS, GPS/Galileo, GPS/BeiDou and all-constellation GNSS. It is shown that the additional GNSS observations enhance the PPP solution accuracy and convergence time in comparison with the tra di tional GPS-only solution. Except for stations with a sufficient number of tracked BeiDou satellites, both Galileo and BeiDou have marginal effects on the positioning accuracy due to their limited number of satel lites. However, for stations with a sufficient number of visible BeiDou satellites, an average of 40% PPP accuracy improvement is obtained. The major contribution to the PPP accuracy enhancement is obtained from GLONASS satellite observations.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1138 ◽  
Author(s):  
Liang Zhang ◽  
Yibin Yao ◽  
Wenjie Peng ◽  
Lulu Shan ◽  
Yulin He ◽  
...  

The prevalence of real-time, low-cost, single-frequency, decimeter-level positioning has increased with the development of global navigation satellite systems (GNSSs). Ionospheric delay accounts for most errors in real-time single-frequency GNSS positioning. To eliminate ionospheric interference in real-time single-frequency precise point positioning (RT-SF-PPP), global ionospheric vertical total electron content (VTEC) product is designed in the next stage of the International GNSS Service (IGS) real-time service (RTS). In this study, real-time generation of a global ionospheric map (GIM) based on IGS RTS is proposed and assessed. There are three crucial steps in the process of generating a real-time global ionospheric map (RTGIM): estimating station differential code bias (DCB) using the precise point positioning (PPP) method, deriving slant total electron content (STEC) from PPP with raw observations, and modeling global vertical total electron content (VTEC). Experiments were carried out to validate the algorithm’s effectiveness. First, one month’s data from 16 globally distributed IGS stations were used to validate the performance of DCB estimation with the PPP method. Second, 30 IGS stations were used to verify the accuracy of static PPP with raw observations. Third, the modeling of residuals was assessed in high and quiet ionospheric activity periods. Afterwards, the quality of RTGIM products was assessed from two aspects: (1) comparison with the Center for Orbit Determination in Europe (CODE) global ionospheric map (GIM) products and (2) determination of the performance of RT-SF-PPP with the RTGIM. Experimental results show that DCB estimation using the PPP method can realize an average accuracy of 0.2 ns; static PPP with raw observations can achieve an accuracy of 0.7, 1.2, and 2.1 cm in the north, east, and up components, respectively. The average standard deviations (STDs) of the model residuals are 2.07 and 2.17 TEC units (TECU) for moderate and high ionospheric activity periods. Moreover, the average root-mean-square (RMS) error of RTGIM products is 2.4 TECU for the one-month moderate ionospheric period. Nevertheless, for the high ionospheric period, the RMS is greater than the RMS in the moderate period. A sub-meter-level horizontal accuracy and meter-level vertical accuracy can be achieved when the RTGIM is employed in RT-SF-PPP.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6447
Author(s):  
Hongyu Zhu ◽  
Linyuan Xia ◽  
Dongjin Wu ◽  
Jingchao Xia ◽  
Qianxia Li

The emergence of dual frequency global navigation satellite system (GNSS) chip actively promotes the progress of precise point positioning (PPP) technology in Android smartphones. However, some characteristics of GNSS signals on current smartphones still adversely affect the positioning accuracy of multi-GNSS PPP. In order to reduce the adverse effects on positioning, this paper takes Huawei Mate30 as the experimental object and presents the analysis of multi-GNSS observations from the aspects of carrier-to-noise ratio, cycle slip, gradual accumulation of phase error, and pseudorange residual. Accordingly, we establish a multi-GNSS PPP mathematical model that is more suitable for GNSS observations from a smartphone. The stochastic model is composed of GNSS step function variances depending on carrier-to-noise ratio, and the robust Kalman filter is applied to parameter estimation. The multi-GNSS experimental results show that the proposed PPP method can significantly reduce the effect of poor satellite signal quality on positioning accuracy. Compared with the conventional PPP model, the root mean square (RMS) of GPS/BeiDou (BDS)/GLONASS static PPP horizontal and vertical errors in the initial 10 min decreased by 23.71% and 62.06%, respectively, and the horizontal positioning accuracy reached 10 cm within 100 min. Meanwhile, the kinematic PPP maximum three-dimensional positioning error of GPS/BDS/GLONASS decreased from 16.543 to 10.317 m.


2020 ◽  
Author(s):  
Mona Kosary ◽  
Saeed Farzaneh ◽  
Maike Schumacher ◽  
Ehsan Forootan

&lt;p&gt;Increasing the quality of ionosphere modeling is crucial and remains a challenge for many geodetic applications such as GNSS Precise Point Positioning (PPP) and navigation. Ionosphere models are the main tool to provide an estimation of Total Electron Content (TEC) to be corrected from GNSS career phase and pseudorange measurements. Skills of these models are however limited due to the simplifications in model equations and the imperfect knowledge of model parameters. In this study, an ionosphere reconstruction approach is presented, where global estimations of geodetic-based TEC measurements are combined with an ionospheric background model. This is achieved here through a novel simultaneous Calibration and Data Assimilation (C/DA) technique that works based on the sequential Ensemble Kalman Filter (EnKF). The C/DA method ingests the actual ionospheric measurements (derived from global GNSS measurements) into the IRI (International Reference Ionosphere) model. It also calibrates those parameters that control the F2 layer&amp;#8217;s characteristics such as selected important CCIR (Comit&amp;#233; Consultatif International des Radiocommunicationsand) URSI (International Union of Radio Science) coefficients.&amp;#160; The calibrated parameters derived from the C/DA are then replaced in the IRI to simulate TEC values in locations, where less GNSS ground-station infrastructure exists, as well as to enhance the prediction of TEC when the observations are not available or their usage is cautious due to low quality. Our numerical assessments indicate the advantage of the C/DA to improve the IRI&amp;#8217;s performance. Values of the TEC-Root Mean Square of Error (RMSE) are found to be decreased by up to 30% globally, compared to the original IRI simulations. The importance of the new TEC estimations is demonstrated for PPP applications, whose results show improvements in navigation applications.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords: &lt;/strong&gt;Ionosphere, Calibration and Data Assimilation (C/DA), IRI, Total Electron Content (TEC), Precise Point Positioning (PPP), GNSS&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document