Removal of Phenol from Water: A Comparison of Energization Methods

Author(s):  
Lukas R. Grabowski ◽  
Eddie M. van Veldhuizen ◽  
Wijnand R. Rutgers

AbstractDirect electrical energization methods for removal of persistent substances from water are under investigation in the framework of the ytriD-project. The emphasis of the first stage of the project is the energy efficiency. A comparison is made between a batch reactor with a thin layer of water and an aerosol reactor. The method of energization is mainly the application of fast pulses. In case of the batch reactor it is compared with DC. The ozone concentration is determined as an indicator for the efficiency of the chemical reactions, the yield is 4 g/kWh for the DC batch reactor, 50 g/kWh for the pulsed batch reactor and 50-100 g/kWh for the aerosol reactor. For initial testing phenol degradation is determined. 50% of the initial 0.1 mM is reached in 8 min in the pulsed batch reactor and less than 30 s in the aerosol reactor. The phenol removal speeds up by a factor 3 upon the addition of Fe-ions. Matlab simulations confirm that the surface-to-volume ratio is an important parameter for the speed of phenol degradation.

2019 ◽  
Vol 6 (2) ◽  
pp. 126-133 ◽  
Author(s):  
Ciji S. Mathews ◽  
Vikas K. Bhosale ◽  
Prashant S. Kulkarni ◽  
Sanjay P. Kamble

Objective: Selective removal of phenol from organic solvent mixture (benzene + toluene + hexane) or other petroleum by-products have a major concern. Hence, the experiments were conducted on the removal of phenol from synthetically prepared phenolic organic waste by using a green process, ionic liquids. Methods: The ionic liquids, 1-ethyl-3-methyl imidazolium cyanoborohydride, and 1- butyl-3-methyl imidazolium hexafluorophosphate were used for the extraction study. The effect of various operating parameters such as the type of ionic liquids, effluent temperature, extraction time, and the phase volume ratio of ionic liquid and phenol has been studied in details. The ionic liquid, 1-ethyl-3-methyl imidazolium cyanoborohydride selectively extracted 95 % of the phenol from the synthetically prepared organic oil mixture of benzene and toluene, with an initial phenol concentration was 100 ppm. Further, ionic liquids were recycled and reused for six consecutive studies with removal efficiency of about 74%. Additionally, a batch reactor study was conducted to find the process viability for industrial use and 92% phenol removal efficiency was achieved. Results: The study demonstrates the selective removal of phenol from petroleum oil using ionic liquids is a simple and environmentally friendly process for industrial use. Conclusion: This method cannot only extract phenol but also phenol-derived compounds may be extracted from hydrocarbon oil.


2015 ◽  
Vol 8 (2) ◽  
pp. 2148-2155 ◽  
Author(s):  
Abderrahim Benchaib ◽  
Abdesselam Mdaa ◽  
Izeddine Zorkani ◽  
Anouar Jorio

The vanadium dioxide is a material thermo chromium which sees its optical properties changing at the time of the transition from the phase of semiconductor state ↔ metal, at a critical temperature of 68°C. The study of the optical properties of a thin layer of VO₂ thickness 82 nm, such as the dielectric function, the index of refraction, the coefficient ofextinction, the absorption’s coefficient, the reflectivity, the transmittivity, in the photonic spectrum of energy ω located inthe interval: 0.001242 ≤ ω (ev) ≤ 6, enables us to control well its practical utility in various applications, like the intelligentpanes, the photovoltaic, paintings for increasing energy efficiency in buildings, detectors of infra-red (I.R) or ultra-violet(U.V). We will make simulations with Maple and compare our results with those of the literature


2020 ◽  
Vol 38 (9A) ◽  
pp. 1373-1383
Author(s):  
Riyadh S. AL- Mukhtar ◽  
Shurooq T. Remedhan ◽  
Marwa N. Hussin

In this work, effluent wastewater treated by using cyclopentane-water Clathrate system to treat water contaminates with phenols at concentrations (300, 250, 200, 150, 100 and 50) ppm in order to investigate the capability of process performance. Clathrate or hydrate are strong crystal structures including water (host particles) and little particles (guest particles). The experiments were conducted at different cyclopentane-water volume ratios (1: 2 and 1: 4). The work was done in a 250 ml glass cell with an electric mixer at a constant speed of 280 cycles per minute. Phenol was highest removal percent at 300ppm at 1: 4volume ratio was (92.3%), while the lowest concentration at 50 ppm and 1: 2volume ratio was (55%). Yield and Enrich factor had the highest values at the lowest concentration 50ppm and 1:2 volume ratio were (85% and 2.42) respectively. The technique of the Clathrate proved that it has a high capacity in the separation and achieve high removal percentage compared to other methods at standard conditions when the pressure of 1 atmosphere and temperature higher than the degree of freezing water and less economic costs compared to other methods.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2191-2194 ◽  
Author(s):  
M. Fujita ◽  
M. Ike ◽  
T. Kamiya

The metabolic pathway of the phenol degradation in Pseudomonasputida BH was amplified by introducing the recombinant plasmid containing catechol 2,3 oxygenase gene isolated fron the chromosome of BH. This strain could degrade phenol and grow much faster than the wild strain at the phenol concentration of 100mg/L. This strain seems to accelerate the phenol removal rate if it is applied to the treatment of wastewater containing phenol.


Author(s):  
Vijay A. Juwar ◽  
Ajit P. Rathod

Abstract The present study deals with the treatment of complex waste (WW) treated for removal of chemical oxygen demand (COD) of the food industry by a sono-Fenton process using a batch reactor. The response surface methodology (RSM) was employed to investigate the five independent variables, such as reaction time, the molar ratio of H2O2/Fe2+, volume ratio of H2O2/WW, pH of waste, and ultrasonic density on COD removal. The experimental data was optimized. The optimization yields the conditions: Reaction time of 24 min, HP:Fe molar ratio of 2.8, HP:WW volume ratio of 1.9 ml/L, pH of 3.6 and an ultrasonic density of 1.8 W/L. The predicted value of COD was 91% and the experimental result was 90%. The composite desirability value (D) of the predicted percent of COD removal at the optimized level of variables was close to one (D = 0.991).


Author(s):  
Anna Yunitsyna ◽  
Ernest Shtepani

Cities are a complex mass of morphological properties of many city fragments, which play a major role in energy consumption. Urban form, urban patterns, or city fragments can also be seen as defined by algorithms or form generators.  Cities are designed taking into account infrastructure, city standards and land use regulations. Energy efficiency of the urban form may be understood as the balance between gains and losses of energy, which may depend on a set of parameters mostly defined by the geometrical shape of the buildings and the distance between them. The study starts from the development and analysis of 60 hypothetical models in order to evaluate their energy efficiency potential. The Galapagos Evolutionary Solver is used as a tool in order to find the set of parameters, which brings to the morphological properties the optimal combination of density and surface-to-volume ratio. At the final stage morphological properties of 64 Prague’s patterns were selected.  Computer simulation and analysis is performed using the models extracted from the virtual Google Earth model of Prague. During the process of evaluation of the samples, the relationship between the urban form and such parameters as plot coverage, surface-to-volume ratio and the incident solar radiation was established and potentially higher energy efficient structures were indicated. As the result of analysis the interrelation between urban form and energy efficiency was established, which allowed to identify the urban patterns with the higher potential of energy efficiency.


2020 ◽  
Vol 9 (2) ◽  
pp. e04921930
Author(s):  
Matheus Dias Carvalho ◽  
Jorge David Alguiar Beliido ◽  
Antonio Marcos de Oliveira Siqueira ◽  
Júlio Cesar Costa Campos

Find the microstructure of the product generated in a reaction of polymerization is desirable from a material science standpoint, due to the association between the microstructure and the physical properties. For the science of this fact, this paper aims to use stochastic modeling to obtain the microstructure and key information from a set of polymer chains generated during a reaction. From this data, the present article contributes to the minimization of experimental expenses, besides the saving of time, since no experiments are necessary to discover the characteristics of the polymer obtained under certain reaction conditions. This information cannot be found by other usual methodologies for modeling chemical reactions, such as the deterministic form. Also, from a given desired structure, the initial concentration and temperature conditions for forming that product can be obtained. This study was conducted based on Monte Carlo stochastic methods, by which we seek to replicate the randomness present in chemical reactions. The algorithm created in C ++ language determines the variation of the number of molecules of each species with time, besides the chemical composition, the sequence of mere and size of the generated chains. This approach applies to straight-chain homopolymerizations and copolymerizations. In this paper, we studied the polymerization in styrene batch reactors to form polystyrene, in addition to the copolymerization of styrene with alpha-methyl styrene. These simulations were characterized by forming chains with small blocks of monomers.


2021 ◽  
Author(s):  
Romeo Gabriel Dumitrache

A moving bed biofilm reactor was studied for its capability of carbon oxidation and nitrification. The hybrid system made use of suspended biomass in the forms of microbial aggregates and attached biomass in the form of biofilms on suspended carriers. The carriers used for biofilm support were made of polyethylene and have a wagon wheel shape. The carrier fill ratio, which is defined as the volume ratio of carrier to the whole reactor was a key characteristic parameter of the reactor. The experimental runs used different carrier filling ratios from 25 to 50% to determine the optimal operating value for this type of hybrid reactor. Also the nutrient conditions were modified to test the capacity of the system to adapt to various changes in phosphorus loading in the influent wastewater. The results showed that for an influent chemical oxygen demand (COD) of 600 mg/L, ammonia of about 24 mg/L and hydraulic reaction time of 6 hours there was no difference in the performance of the system under the different carrier filling rations.


Sign in / Sign up

Export Citation Format

Share Document