Study of The Influence of Different Variables on Clathrate Practical Applications in Phenol Removal

2020 ◽  
Vol 38 (9A) ◽  
pp. 1373-1383
Author(s):  
Riyadh S. AL- Mukhtar ◽  
Shurooq T. Remedhan ◽  
Marwa N. Hussin

In this work, effluent wastewater treated by using cyclopentane-water Clathrate system to treat water contaminates with phenols at concentrations (300, 250, 200, 150, 100 and 50) ppm in order to investigate the capability of process performance. Clathrate or hydrate are strong crystal structures including water (host particles) and little particles (guest particles). The experiments were conducted at different cyclopentane-water volume ratios (1: 2 and 1: 4). The work was done in a 250 ml glass cell with an electric mixer at a constant speed of 280 cycles per minute. Phenol was highest removal percent at 300ppm at 1: 4volume ratio was (92.3%), while the lowest concentration at 50 ppm and 1: 2volume ratio was (55%). Yield and Enrich factor had the highest values at the lowest concentration 50ppm and 1:2 volume ratio were (85% and 2.42) respectively. The technique of the Clathrate proved that it has a high capacity in the separation and achieve high removal percentage compared to other methods at standard conditions when the pressure of 1 atmosphere and temperature higher than the degree of freezing water and less economic costs compared to other methods.

2013 ◽  
Vol 858 ◽  
pp. 60-66 ◽  
Author(s):  
A.A. Hawari ◽  
C.Y. Tham ◽  
Zuratul Ain Abdul Hamid

In this work, PLLA microspheres were prepared via emulsion solvent evaporation technique. Several synthesis parameters were studied to evaluate their effect on the size of PLLA microspheres. PLLA pallets before emulsion and PLLA microspheres surface chemistry after emulsion were determined using Fourier Transform Infra-red (FTIR). Results showed that PLLA pallets and microspheres FTIR obtained an identical spectrum. Microspheres size and surface morphology were determined using Scanning Electron Microscopy (SEM). In conclusion, the parameters that significantly affect the size of PLLA microspheres were PLLA concentration, DCM to water volume ratio, PVA concentration and stirring speed. PVA molecular weight variation showed no significant change in microspheres size.


2013 ◽  
Vol 860-863 ◽  
pp. 510-513 ◽  
Author(s):  
Yi Zhe Li ◽  
Hua Wang ◽  
Gui Rong Bao

Experiments of Rapeseed Oil Hydrolysis Reaction in Sub-Critical Water (250-300°C, 5-60min) are Conducted in this Paper. Results Show that the Best Conditions for Rapeseed Oil Hydrolysis are Reaction Temperature 290°C, Oil-Water Volume Ratio 1:3, Reaction Time 40min, and Conversion Rate 98.9%. Meanwhile, Kinetic Analysis of this Hydrolysis Reaction is Presented. we Learn that Hydrolysis Reaction Order is 0.7778, Activation Energy is 55.34kJ/mol and the Dynamic Model is .


2021 ◽  
Vol 58 (4) ◽  
pp. 271-277
Author(s):  
Zihan Wang ◽  
Liangliang Lin ◽  
Hujun Xu

Abstract In the present work, oil-in-water (O/W) emulsion systems were prepared by using the PEG-7 lauric acid glycerides as the emulsifiers and the liquid paraffin as the oil phase. The influence of processing parameters such as emulsification temperature, stirring speed, emulsifier concentration, oil-water volume ratio and polymer addition on the stability of the emulsion systems was investigated. In order to determine the optimal conditions for the preparation of the emulsion systems based on PEG-7 lauric acid glycerides, a laser drop size analyser and a rotational rheometer were used. As the stability of the O/W emulsion systems increased, the average droplet size of the O/W emulsions measured by the laser droplet size analyser became smaller and the viscosity, storage modulus and loss modulus of the O/W emulsions measured by the rotational rheometer became larger. The following optimal conditions were determined in this study: emulsification temperature 80°C, stirring speed 500 r/min, emulsifier concentration 5 wt%, oil-water volume ratio 1:1 and added amount of xanthan gum 0.2 wt%. The droplet morphology of the O/W emulsion prepared under the optimal conditions, which was characterised by a super high magnification microscope, is small. Furthermore, the long-term stability of the emulsion system prepared under the optimal conditions was investigated over a period of time (4 weeks). The O/W emulsion proves to be well stable even after 4 weeks, with a water separation rate of 0%.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (8) ◽  
Author(s):  
ERIC JIN ◽  
MALCOLM MACKENZIE ◽  
STEVE OSBORNE ◽  
HONGHI TRAN

The explosion energy generated as molten smelt droplets interact with water was evaluated as a function of smelt distribution, water temperature, and smelt temperature using a thermodynamic model. The results show that increasing smelt-to-water volume ratio and water temperature significantly increases the explosion energy, converting a larger proportion of the thermal energy of smelt into mechanical work. To reduce the chance of violent smelt-water explosions, it is important to: i) optimize the shatter jet design and operation to uniformly distribute the smelt over a large area in the dissolving tank; ii) avoid high green liquor temperature and ensure adequate liquor mixing; and iii) avoid upsets that may cause heavy smelt runoff or jellyroll smelt.


2021 ◽  
Vol 1021 ◽  
pp. 115-128
Author(s):  
Suheila Abd Alreda Akkar ◽  
Sawsan Abd Muslim Mohammed

This research introduced Intelligent Network's proposed design for predicting efficiency in the removal of phenol from wastewater by liquid membrane emulsion. In the inner phase of W / O emulsions, phenol extraction from an aqueous solution was investigated using emulsion liquid membrane prepared with kerosene as a membrane phase, Span 80 as a surfactant, and NaOH as a stripping agent. Experiments were conducted to investigate the effect of three emulsion composition variables, namely: surfactant concentration, membrane phase to-internal (VM / VI) volume ratio, and removal phase concentration in the internal phase, and two process parameters, feed phase agitation speed at organic acid extraction rates, and emulsion-to-feed volume ratio (VE / VF). More than 98% of phenol can be extracted in less than 5 minutes. This article describes compares the performance of different learning algorithms such as GD, RB, GDM, GDX, CG, and LM to predict the efficiency of phenol removal from wastewater through the liquid emulsion membrane. The proposed neural network consisted of (7, 11, 1) neurons in the input , hidden and output layers respectively feed forward ANN with various types of back propagation training algorithms were developed to model the emulsion liquid membrane removal of phenols. The values predicted for the neural network model are found in close agreement with the results of the batch experiment using MATLAB program with a correlation coefficient ( R2) of 0.999 and Mean Squared Error (MSE) of 0.004.


2021 ◽  
Vol 21 (7) ◽  
pp. 3989-3995
Author(s):  
Tejaswi Tanaji Salunkhe ◽  
Il Tae Kim

Lithium metal (Li) has been recognized as a promising anode for most energy storage devices, owing to its high theoretical capacity. Nevertheless, Li anode present serious safety hazards and have a rapidly fading capacity, which limits its practical applications. Herein, a lithium-expanded graphite dual-ion battery (Li-EG DIB) was developed by combining a Li metal sheet as an anode with expanded graphite (EG) as a cathode. EG was produced by microwave (MW) photons energy (~1 × 10-5 eV) at different time durations (15, 30, 45, and 60 s) to allow moderate expansion between the graphite sheets and the removal of the surface functional groups that encourage the intercalation and de-intercalation of the ions; consequently, the capacity was improved. The MW-EG samples were characterized by X-ray powder diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectrophotometry (FT-IR). The EG synthesized at 45 s in MW exhibited a high capacity and a stable and long cycling life. The charge capacity of the Li–EG-45 DIB after 500 cycles at 0.05 Ag-1 was 20.3 mAh g-1 in the voltage window of 2–5 V. It is worth noting that the EG-45 electrode showed ~100% capacity retention, even after the rate test.


2019 ◽  
Vol 10 (6) ◽  
pp. 1902918 ◽  
Author(s):  
Subham Ghosh ◽  
Nabadyuti Barman ◽  
Madhulika Mazumder ◽  
Swapan K. Pati ◽  
Gwenaëlle Rousse ◽  
...  

1983 ◽  
Vol 24 ◽  
Author(s):  
J. Bruce Wagner

ABSTRACTThe introduction of a dispersion of small (≃ 1μ1m) insulating particles into an ionic conductor results in an increase in the ionic conductivity. This behavior is not in accord with classical theory. A number of different examples such as a dispersion of a metallic conductor in a semiconductor, a dispersion of an insulator in a semicondutor, and a dispersion of a metallic conductor in an ionic conductor all yield unusual transport behaviors when the surface area to volume ratio of the dispersoid is large. Under such conditions, a space charge layer or double layer adjacent to the dispersoid must be considered. Practical applications such as solid electrolytes, electrodes, corrosion systems and geological systems were discussed.


2015 ◽  
Vol 6 (3) ◽  
pp. 12-15
Author(s):  
Eduarsyah Eduarsyah ◽  
Devi Astriani .

An object when heated will undergo expansion. Expansion of an object is affected by the expansion coefficient, temperature, and type of object substances that cause the length, area, and volume of the object and other objects differently. Based on these concepts, to investigate the comparative increase in the size of the object that is affected by factors that affect the expansion by heating the body until it reaches the equilibrium temperature. As the object under study will use a block of copper and water with each volume to be measured 10-5 m3 added volume ratio. With the initial temperature of each object 20 oC, both substances will be heated up to a temperature of 30oC, 35oC, 40oC, 45oC, dan 50oC. Both substances are then calculated and compared to the increase in volume experimentally and theoretically. After calculation, a score which indicates that the copper block and the water volume is different. Increase the volume of water is greater than the increase in the volume of copper block in each temperature increment. Both these substances are two different substances that have different volume expansion coefficient as well. So we get that expansion coefficient, temperature, and type of object substances have an affect on the expansion that occurs on an object.


Sign in / Sign up

Export Citation Format

Share Document