Optimization and statistical analysis of sono-Fenton treated wastewater of food industry using reactor by response surface method

Author(s):  
Vijay A. Juwar ◽  
Ajit P. Rathod

Abstract The present study deals with the treatment of complex waste (WW) treated for removal of chemical oxygen demand (COD) of the food industry by a sono-Fenton process using a batch reactor. The response surface methodology (RSM) was employed to investigate the five independent variables, such as reaction time, the molar ratio of H2O2/Fe2+, volume ratio of H2O2/WW, pH of waste, and ultrasonic density on COD removal. The experimental data was optimized. The optimization yields the conditions: Reaction time of 24 min, HP:Fe molar ratio of 2.8, HP:WW volume ratio of 1.9 ml/L, pH of 3.6 and an ultrasonic density of 1.8 W/L. The predicted value of COD was 91% and the experimental result was 90%. The composite desirability value (D) of the predicted percent of COD removal at the optimized level of variables was close to one (D = 0.991).

Author(s):  
Reza Davarnejad ◽  
Seyed Amir Mohajerani

Abstract The edible plant oil production factories consume high amounts of water and contaminate the water resources. This type of wastewater consists of high chemical oxygen demand (COD) which should properly be treated by an efficient technique. Furthermore, it is containing some chemicals obtained from several sources such as H3PO4 (from hydration section), NaOH (from neutralization section) and citric acid (from nickel removal section). The conventional techniques cannot efficiently treat it which is full of COD. Therefore, the electro-Fenton process as a rapid, compact and efficient one has been encouraged to be applied. For this purpose, 47 experiments were designed and carried out using iron electrodes to evaluate the effects of five significant independent variables such as reaction time (min), pH, current density (mA/cm2), volume ratio of H2O2/wastewater (ml/l) and H2O2/Fe2+ molar ratio on the COD removal. Response surface methodology (RSM) was employed to assess individual and interactive effects of the parameters. The optimum conditions were experimentally obtained at reaction time of 87.33 min, pH of 3.03, current density of 57 mA/cm2, H2O2/wastewater volume ratio of 2.13 ml/l and H2O2/Fe2+ molar ratio of 3.61 for COD removal of 62.94 %.


2020 ◽  
Vol 39 (2) ◽  
pp. 129
Author(s):  
Reza Davarnejad ◽  
Jamal Azizi ◽  
Amir Joodaki ◽  
Sepideh Mansoori

The immense volume of highly polluted organic wastewater continuously generated in the beverage industry urges the design of new types of wastewater treatment plants. This study aimed to evaluate the applicability of the electro-Fenton (EF) technique to reduce organic pollution of real effluent from a carbonated soft drink factory. The impact of various process variables like pH, time, current density, H2O2/Fe2+ molar ratio, and the volume ratio of H2O2/soft drink wastewater (SDW) was analyzed using response surface methodology (RSM). The observed responses were in good agreement with predicted values obtained through optimization. The optimum conditions showed a chemical oxygen demand (COD) removal efficiency of 73.07 %, pH of 4.14, time of 41.55 min, current density of 46.12 mA/cm2, H2O2/Fe2+ molar ratio of 0.9802, and H2O2/SDW volume fraction of 2.74 ml/l. The EF process was able to effectively diminish the organic pollution, reduce the residence time and, therefore, the operating costs.


2013 ◽  
Vol 69 (2) ◽  
pp. 343-349 ◽  
Author(s):  
Reza Davarnejad ◽  
Mostafa Keshavarz Moraveji ◽  
Masoud Pirhadi ◽  
Mohsen Mohammadi

The operating parameters in the electro-Fenton process were simulated using computational fluid dynamics (CFD). The effects of H2O2/Fe2+ molar ratio, current density, pH and reaction time were numerically investigated. The results were compared with the experimental data. The simulated data showed that maximum chemical oxygen demand (COD) removal was around 91.52% at pH of 3.27, H2O2/Fe2+ molar ratio of 1.16, current density of 59.29 mA/cm2 and reaction time of 41.7 min while the experimental data obtained from the literature showed a maximum COD removal (94.7%) at pH of 3, H2O2/Fe2+ molar ratio of 1, current density of 49 mA/cm2 and reaction time of 43 min.


2017 ◽  
Vol 76 (8) ◽  
pp. 2015-2031 ◽  
Author(s):  
Senem Yazici Guvenc ◽  
Hanife Sari Erkan ◽  
Gamze Varank ◽  
Mehmet Sinan Bilgili ◽  
Guleda Onkal Engin

This study deals with chemical oxygen demand (COD), phenol and Ca+2 removal from paper mill industry wastewater by electrocoagulation (EC) and electro-Fenton (EF) processes. A response surface methodology (RSM) approach was employed to evaluate the effects and interactions of the process variables and to optimize the performance of both processes. Significant quadratic polynomial models were obtained (R2 = 0.959, R2 = 0.993 and R2 = 0.969 for COD, phenol and Ca+2 removal, respectively, for EC and R2 = 0.936, R2 = 0.934 and R2 = 0.890 for COD, phenol and Ca+2 removal, respectively). Numerical optimization based on desirability function was employed; in a 27.55 min trial, 34.7% of COD removal was achieved at pH 9 and current density 96 mA/cm2 for EC, whereas in a 30 min trial, 74.31% of COD removal was achieved at pH 2 and current density 96 mA/cm2 and H2O2/COD molar ratio 2.0 for EF. The operating costs were calculated to be 6.44 €/m3 for EC and 7.02 €/m3 for EF depending on energy and electrode consumption at optimum conditions. The results indicate that the RSM is suitable for the design and optimization of both of the processes. However, EF process was a more effective technology for paper mill industry wastewater treatment as compared with EC.


2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


2018 ◽  
Vol 2017 (3) ◽  
pp. 661-666
Author(s):  
Xu Zeng ◽  
Jun Liu ◽  
Jianfu Zhao

Abstract Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe3+ as catalyst was carried out in a batch reactor. Results showed that the degradation of pharmaceutical wastewater was enhanced significantly by Fe3+. The effects of reaction parameters, such as the catalyst dose, reaction temperature, time, and initial oxygen pressure, were discussed. The chemical oxygen demand (COD) removal increased with the increases of catalyst dose, temperature, time and oxygen supply. With the initial COD 34,000–35,000 mg/L, approximately 70% COD removal can be achieved under the conditions of catalyst 1.0 g and oxygen pressure 1.0 MPa at 250 °C after 60 min. The results of kinetic studies showed that two reaction steps existed in this oxidation process, which followed an apparent first-order rate law. This process provides an effective approach for the pretreatment of high concentration pharmaceutical wastewater.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ali Jalilzadeh ◽  
Ramin Nabizadeh ◽  
Alireza Mesdaghinia ◽  
Aliakbar Azimi ◽  
Simin Nasseri ◽  
...  

A systematic model for chemical oxygen demand (COD) removal using the ANAMMOX (Anaerobic AMMonium OXidation) process was provided based on an experimental design. At first, the experimental data was collected from a combined biological aerobic/anaerobic reactor. For modelling and optimization of COD removal, the main parameters were considered, such as COD loading, ammonium, pH, and temperature. From the models, the optimum conditions were determined as COD 97.5 mg/L, ammonium concentration equal to 28.75 mg-N/L, pH 7.72, and temperature 31.3°C. Finally, the analysis of the optimum conditions, performed by the response surface method, predicted COD removal efficiency of 81.07% at the optimum condition.


2014 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Edy Purwanto ◽  
Lieke Riadi ◽  
Nathania Tamara I. ◽  
Mellisha Ika K.

Biopolyol is a raw material for synthesis of polyurethanes which is used as thermoset and thermoplastic materials, adhesives, rigid or non-rigid foams and also for coating. The utilization of waste edible oil as feedstock for synthesis of biopolyol has attracted some researchers. However, there is little attention focused on the application of ozone technology for synthesis of biopolyol from used cooking oil through ozonolysis reaction. Response surface methodology was performed to determine the optimal operating condition in the synthesis of biopolyol using ozone and sorbitol as a hydroxyl group source. The influence of input variables such as temperature, reaction time, molar ratio of oil to sorbitol and ozone concentration on hydroxyl value quantified was studied. The optimal condition was determined by high amount of hydroxyl value resulted from response surface method which used the experimental data. The ozonolysis reaction was conducted in a batch reactor equipped with agitator, tube sparger, thermocouple, reflux condenser and potassium iodide trap. Central composite design with four independent variables and one response variable was performed to determine the influence of independent variables on output variable of hydroxyl value of biopolyol. The hydroxyl value of polyol is a quadratic function of molar ratio of oil to methanol and a linear function of reaction temperature. The optimal operating condition was achieved at a temperature of 25℃, a reaction time of 5 hours, molar ratio of used cooking oil to sorbitol is 1:7 and ozone concentration about 4.8%.Keywords: Ozonolysis; Biopolyol; Hydroxyl value; Used cooking oil; Palm oil


2019 ◽  
Vol 19 (4) ◽  
pp. 849
Author(s):  
Nurul Atikah Amin Yusof ◽  
Nursyamsyila Mat Hadzir ◽  
Siti Efliza Ashari ◽  
Nor Suhaila Mohamad Hanapi ◽  
Rossuriati Dol Hamid

Optimization of the lipase catalyzed enzymatic synthesis of betulinic acid amide in the presence of immobilized lipase, Novozym 435 from Candida antartica as a biocatalyst was studied. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of the synthesis parameters, such as reaction time (20–36 h), reaction temperature (37–45 °C), substrate molar ratio of betulinic acid to butylamine (1:1–1:3), and enzyme amounts (80–120 mg) on the percentage yield of betulinic acid amide by direct amidation reaction. The optimum conditions for synthesis were: reaction time of 28 h 33 min, reaction temperature of 42.92 °C, substrate molar ratio of 1:2.21, and enzyme amount of 97.77 mg. The percentage yield of actual experimental values obtained 65.09% which compared well with the maximum predicted value of 67.23%. The obtained amide was characterized by GC, GCMS and 13C NMR. Betulinic acid amide (BAA) showed a better cytotoxicity compared to betulinic acid as the concentration inhibited 50% of the cell growth (IC50) against MDA-MB-231 cell line (IC50 < 30 µg/mL).


2021 ◽  
Author(s):  
Romeo Gabriel Dumitrache

A moving bed biofilm reactor was studied for its capability of carbon oxidation and nitrification. The hybrid system made use of suspended biomass in the forms of microbial aggregates and attached biomass in the form of biofilms on suspended carriers. The carriers used for biofilm support were made of polyethylene and have a wagon wheel shape. The carrier fill ratio, which is defined as the volume ratio of carrier to the whole reactor was a key characteristic parameter of the reactor. The experimental runs used different carrier filling ratios from 25 to 50% to determine the optimal operating value for this type of hybrid reactor. Also the nutrient conditions were modified to test the capacity of the system to adapt to various changes in phosphorus loading in the influent wastewater. The results showed that for an influent chemical oxygen demand (COD) of 600 mg/L, ammonia of about 24 mg/L and hydraulic reaction time of 6 hours there was no difference in the performance of the system under the different carrier filling rations.


Sign in / Sign up

Export Citation Format

Share Document