Removal of Phenol from Organic System by Using Ionic Liquids

2019 ◽  
Vol 6 (2) ◽  
pp. 126-133 ◽  
Author(s):  
Ciji S. Mathews ◽  
Vikas K. Bhosale ◽  
Prashant S. Kulkarni ◽  
Sanjay P. Kamble

Objective: Selective removal of phenol from organic solvent mixture (benzene + toluene + hexane) or other petroleum by-products have a major concern. Hence, the experiments were conducted on the removal of phenol from synthetically prepared phenolic organic waste by using a green process, ionic liquids. Methods: The ionic liquids, 1-ethyl-3-methyl imidazolium cyanoborohydride, and 1- butyl-3-methyl imidazolium hexafluorophosphate were used for the extraction study. The effect of various operating parameters such as the type of ionic liquids, effluent temperature, extraction time, and the phase volume ratio of ionic liquid and phenol has been studied in details. The ionic liquid, 1-ethyl-3-methyl imidazolium cyanoborohydride selectively extracted 95 % of the phenol from the synthetically prepared organic oil mixture of benzene and toluene, with an initial phenol concentration was 100 ppm. Further, ionic liquids were recycled and reused for six consecutive studies with removal efficiency of about 74%. Additionally, a batch reactor study was conducted to find the process viability for industrial use and 92% phenol removal efficiency was achieved. Results: The study demonstrates the selective removal of phenol from petroleum oil using ionic liquids is a simple and environmentally friendly process for industrial use. Conclusion: This method cannot only extract phenol but also phenol-derived compounds may be extracted from hydrocarbon oil.

Author(s):  
Daniel C Morris ◽  
Stuart W Prescott ◽  
Jason B Harper

A series of ionic liquids based on the 1-alkyl-3-methylimidazolium cations were examined as components of the solvent mixture for a bimolecular substitution process. The effects on both the rate coefficient...


2020 ◽  
Vol 18 (28) ◽  
pp. 5442-5452 ◽  
Author(s):  
Alyssa Gilbert ◽  
Ronald S. Haines ◽  
Jason B. Harper

Using an ionic liquid in the solvent mixture for the reaction of a galactose substrate leads to changes in both the rate constant and the products as the solvent composition changes.


Author(s):  
Lukas R. Grabowski ◽  
Eddie M. van Veldhuizen ◽  
Wijnand R. Rutgers

AbstractDirect electrical energization methods for removal of persistent substances from water are under investigation in the framework of the ytriD-project. The emphasis of the first stage of the project is the energy efficiency. A comparison is made between a batch reactor with a thin layer of water and an aerosol reactor. The method of energization is mainly the application of fast pulses. In case of the batch reactor it is compared with DC. The ozone concentration is determined as an indicator for the efficiency of the chemical reactions, the yield is 4 g/kWh for the DC batch reactor, 50 g/kWh for the pulsed batch reactor and 50-100 g/kWh for the aerosol reactor. For initial testing phenol degradation is determined. 50% of the initial 0.1 mM is reached in 8 min in the pulsed batch reactor and less than 30 s in the aerosol reactor. The phenol removal speeds up by a factor 3 upon the addition of Fe-ions. Matlab simulations confirm that the surface-to-volume ratio is an important parameter for the speed of phenol degradation.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4051-4056 ◽  
Author(s):  
MASAMI KUMANO ◽  
TOMOKI YABUTANI ◽  
JUNKO MOTONAKA ◽  
YUJI MISHIMA

Ionic liquids are expected to replace conventional organic solvents in organic synthesis, solvent extraction and electrochemistry due to their unique characters such as low volatility, high stability and so on. In this work, N , N ,-diethyl- N -methyl- N -(2-methoxyethyl) ammonium bis(trifluoromethansulfonyl)imide was used as an alternative solvent to extract heavy metal ions. As the extracting conditions, the additional effect of 8-hydroxyquinoline (8-HQ) as metal chelating agent into ionic liquids, shaking time and volume ratio were investigated. As extraction efficiency depended on 8-HQ concentration significantly, in order to extract high concentrated metal ions the solubility of 8-HQ into ionic liquid was tested. N , N ,-diethyl- N -methyl- N -(2-methoxyethyl) ammonium bis(trifluoromethansulfonyl)imide had good solubility of 8-HQ. Consequently, 5 μmol of copper, zinc, cadmium and manganese could be completely recovered with 100 μl of ionic liquid.


Langmuir ◽  
2014 ◽  
Vol 30 (40) ◽  
pp. 11890-11896 ◽  
Author(s):  
Takumi Kusano ◽  
Kenta Fujii ◽  
Kei Hashimoto ◽  
Mitsuhiro Shibayama

2017 ◽  
Author(s):  
Jose A. Pomposo

Understanding the miscibility behavior of ionic liquid (IL) / monomer, IL / polymer and IL / nanoparticle mixtures is critical for the use of ILs as green solvents in polymerization processes, and to rationalize recent observations concerning the superior solubility of some proteins in ILs when compared to standard solvents. In this work, the most relevant results obtained in terms of a three-component Flory-Huggins theory concerning the “Extra Solvent Power, ESP” of ILs when compared to traditional non-ionic solvents for monomeric solutes (case I), linear polymers (case II) and globular nanoparticles (case III) are presented. Moreover, useful ESP maps are drawn for the first time for IL mixtures corresponding to case I, II and III. Finally, a potential pathway to improve the miscibility of non-ionic polymers in ILs is also proposed.


2020 ◽  
Author(s):  
Swati Arora ◽  
Julisa Rozon ◽  
Jennifer Laaser

<div>In this work, we investigate the dynamics of ion motion in “doubly-polymerized” ionic liquids (DPILs) in which both charged species of an ionic liquid are covalently linked to the same polymer chains. Broadband dielectric spectroscopy is used to characterize these materials over a broad frequency and temperature range, and their behavior is compared to that of conventional “singly-polymerized” ionic liquids (SPILs) in which only one of the charged species is attached to the polymer chains. Polymerization of the DPIL decreases the bulk ionic conductivity by four orders of magnitude relative to both SPILs. The timescales for local ionic rearrangement are similarly found to be approximately four orders of magnitude slower in the DPILs than in the SPILs, and the DPILs also have a lower static dielectric constant. These results suggest that copolymerization of the ionic monomers affects ion motion on both the bulk and the local scales, with ion pairs serving to form strong physical crosslinks between the polymer chains. This study provides quantitative insight into the energetics and timescales of ion motion that drive the phenomenon of “ion locking” currently under investigation for new classes of organic electronics.</div>


2020 ◽  
Vol 38 (9A) ◽  
pp. 1373-1383
Author(s):  
Riyadh S. AL- Mukhtar ◽  
Shurooq T. Remedhan ◽  
Marwa N. Hussin

In this work, effluent wastewater treated by using cyclopentane-water Clathrate system to treat water contaminates with phenols at concentrations (300, 250, 200, 150, 100 and 50) ppm in order to investigate the capability of process performance. Clathrate or hydrate are strong crystal structures including water (host particles) and little particles (guest particles). The experiments were conducted at different cyclopentane-water volume ratios (1: 2 and 1: 4). The work was done in a 250 ml glass cell with an electric mixer at a constant speed of 280 cycles per minute. Phenol was highest removal percent at 300ppm at 1: 4volume ratio was (92.3%), while the lowest concentration at 50 ppm and 1: 2volume ratio was (55%). Yield and Enrich factor had the highest values at the lowest concentration 50ppm and 1:2 volume ratio were (85% and 2.42) respectively. The technique of the Clathrate proved that it has a high capacity in the separation and achieve high removal percentage compared to other methods at standard conditions when the pressure of 1 atmosphere and temperature higher than the degree of freezing water and less economic costs compared to other methods.


2019 ◽  
Vol 16 (7) ◽  
pp. 550-555
Author(s):  
Dinesh K. Jangid ◽  
Keshav L. Ameta ◽  
Surbhi Dhadda ◽  
Anjali Guleria ◽  
Prakash G. Goswami ◽  
...  

Ionic Liquid assisted efficient synthesis of some 2-aminobenzenethiols has been reported using three different Ionic Liquids (ILs) namely methylimidazolium tetrafluoroborate [MIM]+[BF4]−, methylimidazolium chloride [MIM]+[Cl]− and methylimidazolium nitrate [MIM]+[NO3]−. A comparative study has been carried out for the synthesis of target molecules in the presence and absence of IL, leading to conclusion that maximum yield has been observed with [MIM]+[BF4]−.


2020 ◽  
Vol 16 (5) ◽  
pp. 652-659
Author(s):  
Asiye A. Avan ◽  
Hayati Filik

Background: An Ionic Liquid-based based Dispersive Liquid-Liquid Microextraction (IL-DLLME) method was not applied to preconcentration and determination of bilirubin. Ionic Liquids (ILs) are new chemical compounds. In recent years, Ionic Liquids (ILs) have been employed as alternative solvents to toxic organic solvents. Due to these perfect properties, ILs have already been applied in many analytical extraction processes, presenting high extraction yield and selectivity for analytes. Methods: In this study, IL-DLLME was applied to biological samples (urine and serum) for the spectrophotometric detection of bilirubin. For bilirubin analysis, the full-color development was based on the reaction with periodate in the presence of hydrochloric acid. The high affinity of bilirubin for the ionic liquid phase gave extraction percentages above 98% in 0.3 M HCl solution. Results: Several IL-extraction parameters were optimized and room temperature ionic liquid 1-butyl- 1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and ethanol were used as extraction and disperser solution. The linear range was found in the range of 0.5-6.0 μM (0.3-3.5 μg mL-1) and the limits of detection of the proposed method was 0.5 μM (0.3 μg mL-1). The proposed method was applied for the preconcentration and separation of trace bilirubin in real urine samples. Also, the recoveries for bilirubin in spiked biological samples (urine and serum) were found to be acceptable, between 95-102%. Conclusion: The proposed IL-DLLMEapproach was employed for the enrichment and determination of trace levels of bilirubin in urine samples using NaIO4 as an oxidizing agent and Uv-vis spectrophotometric detection. The periodate oxidation of bilirubin is rapid, effective, selective, and simple to perform. The method contains only HCl, NaOI4, and an anionic surfactant. The method may be useful for economizing in the consumption of reagents in bilirubin determining. The IL-DLLMEmethod ensures a high yield and has a low toxicity no skin sensitization, no mutagenicity and no ecotoxicity in an aquatic environment since only very low quantities of an IL is required. For full-color formation, no any extra auxiliary reagents are required. Besides, the IL-DLLME technique uses a low-cost instrument such as Uv-vis which is present in most of the medical laboratories.


Sign in / Sign up

Export Citation Format

Share Document