Effects of Calcination Process on Photocatalytic Activity of TiO2/MCM- 41 Photocatalyst

Author(s):  
Yeshuo Dong ◽  
Xuening Fei ◽  
Hongwei Zhang ◽  
Lu Yu

AbstractMCM-41 mesoporous zeolite was pretreated by high temperature activation and hydrochloric acid treating. TiO

2021 ◽  
pp. 130616
Author(s):  
Gun Anit Kaur ◽  
Vinit Sharma ◽  
Neeraj Gupta ◽  
Mamta Shandilya ◽  
Radheshyam Rai

2013 ◽  
Vol 579 ◽  
pp. 111-113 ◽  
Author(s):  
Fumiaki Amano ◽  
Masashi Nakata ◽  
Kenji Asami ◽  
Akira Yamakata

1930 ◽  
Vol 26 (9) ◽  
pp. 943-943
Author(s):  
A. Vaynshteyn

Abstracts. Venereology and Dermatology. Gonorrhea, syphilis and malaria. Rosenberg (Arch f. Schiffs und Tropenkr. Bd. 33. H. 19). for a number of years observed the beneficial effect of acute natural malaria on the course of gonorrhea, syphilis and neurosyphilis. Cases of acute gonorrhea that did not respond to conventional remedies (protargol, urotropin, gonosan) were quickly cured from the addition of acute malaria. Briefly dwelling on the existing theories of nonspecific therapy (high temperature, activation of protoplasm, etc.), the author does not give preference to any one and strongly recommends the theme "malaria and gonorrhea" to the attention of doctors (primarily doctors of the tropics).


2020 ◽  
Vol 7 (1) ◽  
pp. 191539 ◽  
Author(s):  
Takamasa Ishigaki ◽  
Yusuke Nakada ◽  
Naoki Tarutani ◽  
Tetsuo Uchikoshi ◽  
Yoshihiro Tsujimoto ◽  
...  

Nano-size EVONIK AEROXIDE ® P25 titanium dioxide, TiO 2 , powder was heat-treated at temperatures, 700–900°C, in air. An X-ray diffraction study showed that the P25 powder is composed of approximately 20 and approximately 80 mass% of rutile and anatase phases, respectively. It was also shown that the transformation from anatase to rutile induced by high-temperature heat treatment was almost completed at 750°C, whereas a small amount (less than 3 mass%) of anatase phase was still left even in the powder heat-treated at 900°C. The transformation behaviour was consistent with results obtained by Raman scattering spectroscopy. Raman experiments also indicated that high-temperature heating induced the formation of oxide ion vacancies. Powders were dispersed in methyl orange (MO) aqueous solution, and the bleach rate of MO was measured to evaluate photocatalytic activity under ultraviolet (UV)- and visible-light irradiation. After the heat treatment, the UV-light photocatalytic performance sharply deteriorated. Interestingly, visible-light photocatalytic activity was enhanced by high-temperature heating and reached the highest performance for an 800°C-heated sample, indicating that the P25 powder obtained high visible-light photocatalytic performance after heat treatment. Even after 900°C heat treatment, the photocatalytic performance was higher than that of as-received powder. Enhancement of photocatalytic activities was discussed in relation to visible light absorption and charge carrier transfer.


2018 ◽  
Vol 91 (1) ◽  
pp. 205-224 ◽  
Author(s):  
Richard J. Pazur ◽  
T. Mengistu

ABSTRACT A series of six carbon black reinforced brominated poly(isobutylene-co-isoprene) (BIIR) compounds has been developed varying only in cure system type: sulfur, sulfur donor, zinc oxide, peroxide, phenolic resin, and ionic. Compounds were aged from room temperature up to 115 °C, and hardness, mechanical properties, and network chain density were measured. Non-Arrhenius behavior was observed due to data curvature from 70 to 85 °C. The oxidation process was adequately described by assigning low (23–85 °C) and high (85–115 °C) temperature regimes. Heterogeneous aging due to diffusion limited oxygen (DLO) occurred for heat aging above 85 °C, and all measured responses except tensile strength were strongly affected, causing lower activation energies. The activation energy for the high temperature oxidation process is in the range of 107 to 133 kJ/mol in the following ascending order: zinc oxide, ionic, sulfur donor, sulfur, peroxide, and resin. The midpoint of the high temperature activation energies is of the same order as the BIIR and poly(isobutylene) elastomers. The low temperature activation energy is in the range of 55–60 kJ/mol and is likely due to a combination of oxidative chain scission (crosslink density loss) and crosslinking recombination (network building) reactions. Apart from the crosslink structure stability, the presence of unsaturation along the polymer chain after vulcanization affects the high temperature activation energy.


1982 ◽  
Vol 22 (01) ◽  
pp. 17-27 ◽  
Author(s):  
J.E. Harrar ◽  
F.E. Locke ◽  
C.H. Otto ◽  
L.E. Lorensen ◽  
S.B. Monaco ◽  
...  

Harrar, J.E., Lawrence Livermore Natl. Laboratory Locke, F.E., Lawrence Livermore Natl. Laboratory Otto Jr., C.H., Lawrence Livermore Natl. Laboratory Lorensen, L.E., Lawrence Livermore Natl. Laboratory Monaco, S.B., Lawrence Livermore Natl. Laboratory Frey, W.P., Lawrence Livermore Natl. Laboratory Abstract A pilot-size brine handling system was operated from Magmamax Well 1 in southern California to study the characteristics of siliceous scale deposition and to evaluate the possibility of treating the brine with chemical additives to control scaling. The rates of formation, chemical constitution, and morphology of the scales were examined as functions of temperature, brine salinity, substrate material, and antiscalant additive activity. Potential antiscalant compounds were screened using a silica-precipitation inhibition test at 90 deg. C. The most active classes of compounds were those containing polymeric chains of oxyethylene and polymeric nitrogen compounds that are cationic in character. The best single compound was Corcat P-18 TM (Cordova Chemical Co. polyethylene imine, molecular weight 1,800). This compound had no effect on the scale formed at 220 deg. C but it reduced the rates of scaling at 125 and 90 deg. C by factors of 4 and 18, respectively, and it also functioned as a corrosion inhibitor. The best additive formulation for the brines of the Salton Sea Geothermal field (SSGF) appears to be a mixture of an organic silica-precipitation inhibitor, a small amount of hydrochloric acid, and a phosphonate crystalline deposit inhibitor. Introduction Interest in utilizing the geothermal resources of the Imperial Valley in California for the generation of electricity has accelerated rapidly in recent years. One resource in particular, the SSGF, is attractive because of its high temperature and size. Recent estimates of its potential for electrical power generation range between 1,300 and 8,700 MW per year (over a 20-year period). The fluid of this resource, however, is a highly corrosive, high-salinity brine containing several constituents that form deposits of scale on power plant components as the brine is cooled. Economical utilization of the SSGF will require techniques for limiting scaling and corrosion to acceptable levels. Scale deposition control at SSGF is particularly difficult because the scale that forms in the portions of the brine handling equipment operating at low pressures and temperatures (100 to 150 deg. C) is predominantly silica and it deposits at rates approaching 0.2 in./D. (Energy extraction systems in which the brine is flashed and injected at high temperature mitigate this problem, but considerable energy is discarded.) Chemical treatment scheme to retard the low temperature scale have been considered, but until recently there have been no systematic investigations of this approach. In 1976, Owen and coworkers demonstrated effective control of the siliceous scales by acidification of the brine with hydrochloric acid, and this technique has been verified in New Zealand by Rothbaum et al. However, for SSGF brines, acidification has several disadvantages:because concentrations >300 ppm of HCl are required, chemical costs are high;the pH of the brine must be lowered from 6 to 3 for complete scale control, and this sharply increases corrosion rates, andacidification tends to interfere with effluent brine treatment Processes involving sludge-bed reactor clarification. Other methods of scale control such as seeding with a silica sludge and the use of scale adhesion inhibitors also have been examined briefly. In this paper we present the results of tests of organic chemical agents for silica scale control in hypersaline geothermal brines. Prior to this work, virtually no knowledge existed on the types of compounds that would interact with silica under the severe geothermal conditions of high temperature, high ionic strength, and high fluid shear rates. Accordingly, to screen a large number of substances rather rapidly, we designed a small-scale flash system as a brine treatment test apparatus and operated it from SSGF Magmamax Well 1 and Woolsey Well 1. SPEJ P. 17^


1998 ◽  
Vol 44 (1-4) ◽  
pp. 327-332 ◽  
Author(s):  
Masakazu Anpo ◽  
Hiromi Yamashita ◽  
Keita Ikeue ◽  
Yo Fujii ◽  
Shu Guo Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document