INFLUENCE OF THE CROSSLINK STRUCTURE ON THE ACTIVATION ENERGY CALCULATED UNDER THERMO-OXIDATIVE CONDITIONS

2018 ◽  
Vol 91 (1) ◽  
pp. 205-224 ◽  
Author(s):  
Richard J. Pazur ◽  
T. Mengistu

ABSTRACT A series of six carbon black reinforced brominated poly(isobutylene-co-isoprene) (BIIR) compounds has been developed varying only in cure system type: sulfur, sulfur donor, zinc oxide, peroxide, phenolic resin, and ionic. Compounds were aged from room temperature up to 115 °C, and hardness, mechanical properties, and network chain density were measured. Non-Arrhenius behavior was observed due to data curvature from 70 to 85 °C. The oxidation process was adequately described by assigning low (23–85 °C) and high (85–115 °C) temperature regimes. Heterogeneous aging due to diffusion limited oxygen (DLO) occurred for heat aging above 85 °C, and all measured responses except tensile strength were strongly affected, causing lower activation energies. The activation energy for the high temperature oxidation process is in the range of 107 to 133 kJ/mol in the following ascending order: zinc oxide, ionic, sulfur donor, sulfur, peroxide, and resin. The midpoint of the high temperature activation energies is of the same order as the BIIR and poly(isobutylene) elastomers. The low temperature activation energy is in the range of 55–60 kJ/mol and is likely due to a combination of oxidative chain scission (crosslink density loss) and crosslinking recombination (network building) reactions. Apart from the crosslink structure stability, the presence of unsaturation along the polymer chain after vulcanization affects the high temperature activation energy.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


2017 ◽  
Vol 19 (11) ◽  
pp. 1700182 ◽  
Author(s):  
Harpreet Singh Grewal ◽  
Ramachandran Murali Sanjiv ◽  
Harpreet Singh Arora ◽  
Ram Kumar ◽  
Aditya Ayyagari ◽  
...  

1993 ◽  
Vol 28 (4) ◽  
pp. 1067-1073 ◽  
Author(s):  
Akito Takasaki ◽  
Kozo Ojima ◽  
Youji Taneda ◽  
Taiji Hoshiya ◽  
Akira Mitsuhashi

2011 ◽  
Vol 686 ◽  
pp. 613-617
Author(s):  
Jian Zhang ◽  
Cean Guo ◽  
Gang Zhang ◽  
Chong Rui Wang ◽  
Shi Ming Hao

NiCrAlY coatings were deposited on CrNi3MoVA steel substrates by means of magnetron sputtering. The coatings were characterized in terms of their microstructure, hardness, friction coefficient, high-temperature oxidation resistance. Micro-indentation and tribometer testers were employed to measure the mechanical properties of NiCrAlY coatings and CrNi3MoVA steel. The results showed that the hardness of the coatings ranged from 5.7 to 5.9 GPa, with a higher value than that of CrNi3MoVA steel(4.1-4.3 GPa). The coefficient of steady-state friction of the coatings against 45-carbon-steel balls ranged from 0.35 to 0.40, with a lower value than that of CrNi3MoVA steel(0.63-0.68). The isothermal oxidation behavior at 850°C of the coatings were studied in comparison with CrNi3MoVA steel substrates. The results indicated that NiCrAlY coatings substantially increase the high-temperature oxidation resistance of CrNi3MoVA steel and the oxidation process was retarded mainly by the presence of outer complex oxide scales and a continuous Al2O3 inner layer on the coating.


2008 ◽  
Vol 403 ◽  
pp. 197-200 ◽  
Author(s):  
T. Akashi ◽  
Miho Kasajima ◽  
Chiharu Muraoka ◽  
Hajime Kiyono

Oxidation of SiC powder was studied at 1373 K to 1873 K in Ar-O2, Ar-H2O, and Ar-O2-H2O using thermogravimetry. At 1373 K to 1573K, the weight gain increased with increasing water vapor pressure. The oxidation rate was evaluated on the basis of the Ginstering-Brounshtein kinetic model. In this temperature region, the apparent activation energy for the oxidation was almost the same (139-191 kJmol-1) independent of the atmosphere, suggesting that the same oxidation process proceeds. On the other hand, at temperatures >1673 K, the weight gain in the dry O2 (Ar-O2) was greater than that in the wet and wet O2 (Ar-H2O and Ar-O2-H2O). The apparent activation energy in the dry O2 (442 kJmol-1) was much greater than that in the wet and wet O2. We propose that water molecule diffused in silica layer in the wet and wet O2 atmosphere at 1373 K to 1873 K.


2013 ◽  
Vol 05 (03) ◽  
pp. 1350026 ◽  
Author(s):  
RUZHUAN WANG ◽  
WEIGUO LI ◽  
DAINING FANG

At high temperatures above 1650°C, the SiC -depleted layer of ultra-high-temperature ceramics which has high porosity appears during the oxidation process. In this present paper, based on the studies of the oxidative mechanisms and the fracture mechanisms of ultra-high-temperature ceramics under normal and high temperatures, a thermo-damage strength model for the SiC -depleted layer on high temperature oxidation was proposed. Using the model, the phase transformation, microstructure development and fracture performance in the SiC -depleted layer on high temperature oxidation were studied in detail. The study showed that the porosity is mainly related to the oxidation of SiC . And while the SiC is substantially completely oxidized, only a very small part of matrix is oxidized. The fracture strength of the SiC -depleted layer degrades seriously during the high temperature oxidation process. And the bigger the initial volume fraction of SiC , the lower the fracture strength of the SiC -depleted layer is. This layer may become the origin of failure of material, thus the further researches should be undertaken to improve the oxidation behavior for the ultra-high-temperature ceramics in a wider temperature range.


Author(s):  
Zhiqiang Wang ◽  
Ming Liu ◽  
Xingxing Cheng ◽  
Yusheng He ◽  
Yingjie Hu ◽  
...  

Abstract Although heavy oil is an abundant and promising energy source, its processing and utilization are complicated due to its high density, low hydrogen/carbon ratio, and high asphaltene content. Fortunately, these problems can be mitigated by the application of oxy-fuel combustion. To gain deeper insights into the above technology, the characteristics of heavy oil combustion in an O2/CO2 atmosphere was investigated using non-isothermal thermogravimetric analysis. We demonstrate that the combustion process consisted of four stages. Low-molecular-weight hydrocarbons reacted at low temperature, whereas heavy ones required a higher temperature. Increasing the concentration of oxygen resulted in increased TGA and DSC peak intensities and decreased peak widths, and these peaks were shifted to lower temperatures. Coat-Redfern and Flynn-Wall-Ozzawa methods were used to evaluate the kinetic parameters (E, A) of the oxidation process, showing that the high-temperature activation energy was much higher than the low-temperature one due to the different molecular weights of the oxidized substrates in each region. The reaction was demonstrated to be diffusion-controlled, as reflected by the lower activation energy at high oxygen concentration and high temperature, with the influence of oxygen concentration on QO processes being much more obvious than that on SO ones.


Sign in / Sign up

Export Citation Format

Share Document