Effect of adrenocorticotropic hormone on UCP1 gene expression in brown adipocytes

Author(s):  
Hirendra M. Biswas

AbstractBackground:Like other tissues, adrenocorticotropic hormone (ACTH) can produce its effect on brown adipose tissue (BAT). This study was taken to understand the direct effect of ACTH action on thermogenin gene expression and possible relation with α receptors and caffeine with this hormone.Methods:Brown fat precursor cells were isolated from interscapular BAT of young mice and grown in culture. The cells were exposed to norepinephrine (NE) and other agents. Total RNA was isolated after harvesting the cells, and northern blot analysis was performed. Hybridization was performed with nick translated cDNA probes. Filters were exposed to film, and results were evaluated by scanning. Cyclic adenosine monophosphate (cAMP) was measured by using Amersham assay kit.Results:ACTH stimulates thermogenin gene expression in brown adipocytes. Initiation and maximum stimulations are observed with 0.01 μM and 10 μM (about 45%) of ACTH, respectively, in comparison to 0.1 μM of NE. Maximum response of cAMP is also observed with 10 μM of ACTH (about 64%). Studies with cirazoline and ACTH show thatConclusions:ACTH stimulates thermogenin gene expression in cultured brown adipocytes. The complex interrelationship of ACTH with cirazoline indicates the possibility of relation between the activity of ACTH and α receptors in brown adipocytes. Further stimulation of cAMP generation and thermogenin gene expression is possible with ACTH in conjugation with caffeine and RO 20-1724.

Endocrinology ◽  
2012 ◽  
Vol 153 (3) ◽  
pp. 1162-1173 ◽  
Author(s):  
Meritxell Rosell ◽  
Elayne Hondares ◽  
Sadahiko Iwamoto ◽  
Frank J. Gonzalez ◽  
Martin Wabitsch ◽  
...  

Retinol binding protein-4 (RBP4) is a serum protein involved in the transport of vitamin A. It is known to be produced by the liver and white adipose tissue. RBP4 release by white fat has been proposed to induce insulin resistance. We analyzed the regulation and production of RBP4 in brown adipose tissue. RBP4 gene expression is induced in brown fat from mice exposed to cold or treated with peroxisome proliferator-activated receptor (PPAR) agonists. In brown adipocytes in culture, norepinephrine, cAMP, and activators of PPARγ and PPARα induced RBP4 gene expression and RBP4 protein release. The induction of RBP4 gene expression by norepinephrine required intact PPAR-dependent pathways, as evidenced by impaired response of the RBP4 gene expression to norepinephrine in PPARα-null brown adipocytes or in the presence of inhibitors of PPARγ and PPARα. PPARγ and norepinephrine can also induce the RBP4 gene in white adipocytes, and overexpression of PPARα confers regulation by this PPAR subtype to white adipocytes. The RBP4 gene promoter transcription is activated by cAMP, PPARα, and PPARγ. This is mediated by a PPAR-responsive element capable of binding PPARα and PPARγ and required also for activation by cAMP. The induction of the RBP4 gene expression by norepinephrine in brown adipocytes is protein synthesis dependent and requires PPARγ-coactivator-1-α, which acts as a norepinephine-induced coactivator of PPAR on the RBP4 gene. We conclude that PPARγ- and PPARα-mediated signaling controls RBP4 gene expression and releases in brown adipose tissue, and thermogenic activation induces RBP4 gene expression in brown fat through mechanisms involving PPARγ-coactivator-1-α coactivation of PPAR signaling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carolin Muley ◽  
Stefan Kotschi ◽  
Alexander Bartelt

The acclimatization of brown adipose tissue (BAT) to sustained cold exposure requires an adaptive increase in proteasomal protein quality control. Ubiquilins represent a recently identified family of shuttle proteins with versatile functions in protein degradation, such as facilitating substrate targeting and proteasomal degradation. However, whether ubiquilins participate in brown adipocyte function has not been investigated so far. Here, we determine the role of ubiquilins for proteostasis and non-shivering thermogenesis in brown adipocytes. We found that Ubqln1, 2 and 4 are highly expressed in BAT and their expression was induced by cold and proteasomal inhibition. Surprisingly, silencing of ubiquilin gene expression (one or multiple in combinations) did not lead to aggravated ER stress or inflammation. Moreover, ubiquitin level and proteasomal activity under basal conditions were not impacted by loss of ubiquilins. Also, non-shivering thermogenesis measured by norepinephrine-induced respiration remained intact after loss of ubiquilins. In conclusion, ubiquilin proteins are highly abundant in BAT and regulated by cold, but they are dispensable for brown adipocyte proteostasis and thermogenesis.


1997 ◽  
Vol 321 (3) ◽  
pp. 759-767 ◽  
Author(s):  
Pertti KUUSELA ◽  
Stefan REHNMARK ◽  
Anders JACOBSSON ◽  
Barbara CANNON ◽  
Jan NEDERGAARD

In order to investigate whether the positive effect of adrenergic stimulation on lipoprotein lipase (LPL) gene expression in brown adipose tissue is a direct effect on the brown adipocytes themselves, the expression of the LPL gene was investigated by measuring LPL mRNA levels in brown adipocytes, isolated as precursors from the brown adipose tissue of rats and grown in culture in a fully defined medium before experimentation. Addition of noradrenaline led to an enhancement of LPL gene expression; the mRNA levels increased as a linear function of time for at least 5 h and were finally approx. 3 times higher than in control cells, an increase commensurate with that seen in vivoin both LPL mRNA levels and LPL activity during physiological stimulation. The increase was dependent on transcription. The effect of noradrenaline showed simple MichaelisŐMenten kinetics with an EC50 of approx. 11 nM. β3-Agonists (BRL-37344 and CGP-12177) could mimic the effect of noradrenaline; the β1-agonist dobutamine and the β2-agonist salbutamol could not; the α1-agonist cirazoline had only a weak effect. The effect of noradrenaline was fully inhibited by the β-antagonist propranolol and was halved by the α1-antagonist prazosin; the α2-antagonist yohimbine was without effect. An increase in LPL mRNA level similar to (but not significantly exceeding) that caused by noradrenaline could also be induced by the cAMP-elevating agents forskolin and cholera toxin, and 8-Br-cAMP also increased LPL mRNA levels. The increase in LPL gene expression was not mediated via an increase in the level of an intermediary proteinaceous factor. It is concluded that the physiologically induced increase in LPL gene expression is a direct effect of noradrenaline on the brown adipocytes themselves, mediated via a dominant β3-adrenergic pathway and an auxillary α1-adrenergic pathway which converge at a regulatory point in transcriptional control.


2020 ◽  
Vol 22 (1) ◽  
pp. 243
Author(s):  
Avi Lerner ◽  
Drashti Kewada ◽  
Ayan Ahmed ◽  
Kate Hardy ◽  
Mark Christian ◽  
...  

Polycystic ovary syndrome (PCOS) is a common endocrinopathy that is associated with an adverse metabolic profile including reduced postprandial thermogenesis. Although abnormalities in adipose tissue function have been widely reported in women with PCOS, less is known about direct effects of androgen on white and, particularly, brown adipocytes. The purpose of this study was to investigate the effect of the nonaromatizable androgen dihydrotestosterone (DHT) on (1) lipid accumulation and expression of adipogenic markers in immortalized mouse brown adipose cell lines (IMBATs), (2) mitochondrial respiration in IMBATs, (3) mitochondrial DNA content and gene expression, (4) expression of brown adipose tissue (BAT) markers and thermogenic activation. In addition, we profiled the relative levels of 38 adipokines secreted from BAT explants and looked at androgen effects on adipokine gene expression in both IMBATs and immortalized mouse white adipose (IMWATs) cell lines. Androgen treatment inhibited IMBAT differentiation in a dose-dependent manner, reduced markers of adipogenesis, and attenuated the β-adrenoceptor-stimulated increase in uncoupling protein-1 (UCP1) expression. In explants of mouse interscapular BAT, androgen reduced expression of UCP1, peroxisome proliferator-activated receptor-γ coactivator-1 (PCG-1) and Cidea. Significantly, as well as affecting genes involved in thermogenesis in BAT, androgen treatment reduced mitochondrial respiration in IMBATs, as measured by the Seahorse XF method. The results of this study suggest a role for excess androgen in inhibiting brown adipogenesis, attenuating the activation of thermogenesis and reducing mitochondrial respiration in BAT. Together, these data provide a plausible molecular mechanism that may contribute to reduced postprandial thermogenesis and the tendency to obesity in women with PCOS.


2018 ◽  
Vol 29 (5) ◽  
pp. 545-552 ◽  
Author(s):  
Hirendra M. Biswas

AbstractBackgroundBrown adipose tissue (BAT) contains both α- and β-adrenergic receptors. In the literature, the activity of α-adrenoreceptors is less documented, and their functions still remain puzzling. The present investigation has been undertaken to understand α-adrenoreceptors’ activity and their relation between uncoupling protein 1 (UCP1) mRNA expression and cyclic AMP (cAMP) generation in BAT.MethodsBAT precursor cells from young mice were grown in culture. Cells were exposed to norepinephrine (NE) and other agents. RNA was isolated after harvesting the cells, and northern blot was performed. Filters were exposed to film after hybridization with nick-translated complementary DNA probes, and results were evaluated by scanning. Amersham assay kit was used for cAMP measurement.ResultsTreatment of prazosin and yohimbine separately with 1 μM of NE shows stimulation ofUCP1mRNA expression 106% and 154%, respectively, whereas with that of both drugs shows only 76%. cAMP generation occurs 282% with prazosin, 100% with yohimbine, and 382% with both drugs with 1 μM of NE, whereas it is 310%, 40%, and 358%, respectively, with 10 μM of NE.ConclusionsStimulation of thermogenesis after treatment of prazosin and NE may be due to the inhibition of phosphodiesterase enzyme and with yohimbine and NE indicates the possibility of inhibition of the inhibitory effect of α2- and stimulation of α1-receptors. Increase of cAMP concentration with yohimbine and both drugs with NE are not correlated toUCP1mRNA expression. This indicates that the relationship between cAMP elevation and stimulation of thermogenesis is not simple. This study clearly shows the interaction between β- and α-adrenoreceptor activities.


2018 ◽  
Vol 64 (4) ◽  
pp. 244-251
Author(s):  
Natalia B. Chagay ◽  
Ashot M. Mkrtumyan

Methylation of catechol estrogens is catalyzed by catechol-O-methyltransferase. Synthesis and activity of this enzyme is encoded by the COMT gene. Downregulation of COMT expression is responsible for the risk of developing estrogen-dependent tumors. Obesity is a factor determining the overall methylation status in the body. There are two main types of adipose tissue differing in their functional and metabolic characteristics, as well as the microscopic structure: white adipose tissue (WAT) and brown adipose tissue (BAT). Lipolysis of WAT is controlled by hormone-sensitive lipase, which depends is catecholamine dependent. BAT is a special type of adipose tissue whose main function is to produce heat. Activation of β3-adrenergic receptors by catecholamines, both at the central and peripheral levels, is the primary mechanism regulating thermogenesis in mature BAT. Obese patients develop adipose tissue hypoxia, as well as WAT and BAT dysfunction. Adrenergic stimulation of thermogenesis is unclaimed because of «whitening» of brown adipocytes, which manifests itself as degradation of mitochondria. Redirection of stimulation of hormone-sensitive lipase by catecholamines to WAT and the increased need to enhance COMT expression are the potential consequences of modifying the BAT metabolism. Estrogens are natural modulators of lipolysis (as they selectively affect activity of hormone-sensitive lipase) and regulators of BAT thermogenesis. Obesity is accompanied by elevated synthesis of estrone. However, in postmenopausal women it is characterized by a decrease in the total mass and activity of BAT. The role of BAT in the progression or inhibition of growth of the estrogen-dependent tumor tissue at premenopausal and postmenopausal age has not been studied yet and is of interest to researchers. The possible correlation between the activity of brown adipocytes and the COMT expression level is discussed in the context of the risk of developing benign breast dysplasia and cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carola Mancini ◽  
Sabrina Gohlke ◽  
Francisco Garcia-Carrizo ◽  
Vyacheslav Zagoriy ◽  
Heike Stephanowitz ◽  
...  

AbstractBrown adipose tissue function declines during aging and may contribute to the onset of metabolic disorders such as diabetes and obesity. Only limited understanding of the mechanisms leading to the metabolic impairment of brown adipocytes during aging exists. To this end, interscapular brown adipose tissue samples were collected from young and aged mice for quantification of differential gene expression and metabolite levels. To identify potential processes involved in brown adipocyte dysfunction, metabolite concentrations were correlated to aging and significantly changed candidates were subsequently integrated with a non-targeted proteomic dataset and gene expression analyses. Our results include novel age-dependent correlations of polar intermediates in brown adipose tissue. Identified metabolites clustered around three biochemical processes, specifically energy metabolism, nucleotide metabolism and vitamin metabolism. One mechanism of brown adipose tissue dysfunction may be linked to mast cell activity, and we identify increased histamine levels in aged brown fat as a potential biomarker. In addition, alterations of genes involved in synthesis and degradation of many metabolites were mainly observed in the mature brown adipocyte fraction as opposed to the stromal vascular fraction. These findings may provide novel insights on the molecular mechanisms contributing to the impaired thermogenesis of brown adipocytes during aging.


Sign in / Sign up

Export Citation Format

Share Document