Determination of finite difference coefficients for the acoustic wave equation using regularized least-squares inversion

2016 ◽  
Vol 24 (6) ◽  
Author(s):  
Yanfei Wang ◽  
Wenquan Liang ◽  
Zuhair Nashed ◽  
Changchun Yang

AbstractFinite difference (FD) solutions of wave equations have been proven useful in exploration seismology. To yield reliable and interpretable results, the numerically induced error should be minimized over a range of frequencies and angles of propagation. Grid dispersion is one of the key numerical problems and there exist some methods to solve this problem in the literature. Traditionally, the spatial FD operator coefficients are only determined in the spatial domain; however, the wave equation is solved in the temporal and spatial domain simultaneously. Recently, some methods based on the joint temporal-spatial domains have been proposed to address this problem. Variable length coefficients methods are proposed in the literature to improve efficiency while preserving accuracy by using longer operators in the low velocity regions and shorter operators in the high velocity regions. To cope with the ill-conditioning of the linear system induced by long stencil FD operators, we study in this paper a regularizing simplified least-squares model to minimize the phase velocity error in the joint temporal-spatial domain with a variable length of coefficients. Different from our previous study, we determine FD coefficients on the regular grid instead of on the staggered grid. Though the regular grid FD methods are less precise, however, with a little increase of the operator length, the precision can be improved. Stability of the numerical solutions is enhanced by the regularization. Numerical simulations made on one-dimensional to three-dimensional examples show that our scheme needs shorter operators and preserves accuracy compared with the previous methods.

Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. H43-H53 ◽  
Author(s):  
Arash JafarGandomi ◽  
Hiroshi Takenaka

We propose an efficient algorithm for modeling seismic plane-wave propagation in vertically heterogeneous viscoelastic media using a finite-difference time-domain (FDTD) technique. In the algorithm, the wave equation is rewritten for plane waves by applying a Radon transform to the 2D general wave equation. Arbitrary values of the quality factor for [Formula: see text]- and [Formula: see text]-waves ([Formula: see text] and [Formula: see text]) are incorporated into the wave equation via a generalized Zener body rheological model. An FDTD staggered-grid technique is used to numerically solve the derived plane-wave equations. The scheme uses a 1D grid that reduces computation time and memory requirements significantly more than corresponding 2D or 3D computations. Comparing the finite-difference solutions to their corresponding analytical results, we find that the methods are sufficiently accurate. The proposed algorithm is able to calculate synthetic waveforms efficiently and represent viscoelastic attenuation even in very attenuative media. The technique is then used to estimate the plane-wave responses of a sedimentary system to normal and inclined incident waves in the Kanto area of Japan via synthetic vertical seismic profiles.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. T125-T141 ◽  
Author(s):  
Josep de la Puente ◽  
Miguel Ferrer ◽  
Mauricio Hanzich ◽  
José E. Castillo ◽  
José M. Cela

Finite-difference methods for modeling seismic waves are known to be inaccurate when including a realistic topography, due to the large dispersion errors that appear in the modelled surface waves and the scattering introduced by the staircase approximation to the topography. As a consequence, alternatives to finite-difference methods have been proposed to circumvent these issues. We present a new numerical scheme for 3D elastic wave propagation in the presence of strong topography. This finite-difference scheme is based upon a staggered grid of the Lebedev type, or fully staggered grid (FSG). It uses a grid deformation strategy to make a regular Cartesian grid conform to a topographic surface. In addition, the scheme uses a mimetic approach to accurately solve the free-surface condition and hence allows for a less restrictive grid spacing criterion in the computations. The scheme can use high-order operators for the spatial derivatives and obtain low-dispersion results with as few as six points per minimum wavelength. A series of tests in 2D and 3D scenarios, in which our results are compared to analytical and numerical solutions obtained with other numerical approaches, validate the accuracy of our scheme. The resulting FSG mimetic scheme allows for accurate and efficient seismic wave modelling in the presence of very rough topographies with the advantage of using a structured staggered grid.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Jinsong Hu ◽  
Bing Hu ◽  
Youcai Xu

We study the initial-boundary problem of dissipative symmetric regularized long wave equations with damping term. Crank-Nicolson nonlinear-implicit finite difference scheme is designed. Existence and uniqueness of numerical solutions are derived. It is proved that the finite difference scheme is of second-order convergence and unconditionally stable by the discrete energy method. Numerical simulations verify the theoretical analysis.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. T207-T224 ◽  
Author(s):  
Zhiming Ren ◽  
Zhen Chun Li

The traditional high-order finite-difference (FD) methods approximate the spatial derivatives to arbitrary even-order accuracy, whereas the time discretization is still of second-order accuracy. Temporal high-order FD methods can improve the accuracy in time greatly. However, the present methods are designed mainly based on the acoustic wave equation instead of elastic approximation. We have developed two temporal high-order staggered-grid FD (SFD) schemes for modeling elastic wave propagation. A new stencil containing the points on the axis and a few off-axial points is introduced to approximate the spatial derivatives. We derive the dispersion relations of the elastic wave equation based on the new stencil, and we estimate FD coefficients by the Taylor series expansion (TE). The TE-based scheme can achieve ([Formula: see text])th-order spatial and ([Formula: see text])th-order temporal accuracy ([Formula: see text]). We further optimize the coefficients of FD operators using a combination of TE and least squares (LS). The FD coefficients at the off-axial and axial points are computed by TE and LS, respectively. To obtain accurate P-, S-, and converted waves, we extend the wavefield decomposition into the temporal high-order SFD schemes. In our modeling, P- and S-wave separation is implemented and P- and S-wavefields are propagated by P- and S-wave dispersion-relation-based FD operators, respectively. We compare our schemes with the conventional SFD method. Numerical examples demonstrate that our TE-based and TE + LS-based schemes have greater accuracy in time and better stability than the conventional method. Moreover, the TE + LS-based scheme is superior to the TE-based scheme in suppressing the spatial dispersion. Owing to the high accuracy in the time and space domains, our new SFD schemes allow for larger time steps and shorter operator lengths, which can improve the computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document