scholarly journals Fault Signal Recognition in Power Distribution System using Deep Belief Network

2018 ◽  
Vol 29 (1) ◽  
pp. 459-474
Author(s):  
T.C. Srinivasa Rao ◽  
S.S. Tulasi Ram ◽  
J.B.V. Subrahmanyam

Abstract Nowadays, electrical power system is considered as one of the most complicated artificial systems all over the globe, as social and economic development depends on intact, consistent, stable and economic functions. Owing to diverse random causes, accidental failures occur in electrical power systems. Considering this issue, this article aimed to propose the use of deep belief network (DBN) in detecting and classifying fault signals such as transient, sag and swell in the transmission line. Here, wavelet-decomposed fault signals are extracted and the fault is diagnosed based on the decomposed signal by the DBN model. Further, this article provides the performance analysis by determining the types I and II measures and root-mean-square-error (RMSE) measure. In the performance analysis, it compares the performance of the DBN model to various conventional models like linear support vector machine (SVM), quadratic SVM, radial basis function SVM, polynomial SVM, multilayer perceptron SVM, Levenberg-Marquardt neural network and gradient descent neural network models. The simulation results validate that the proposed DBN model effectively detects and classifies the fault signal in power distribution system when compared to the traditional model.

Author(s):  
Zahir Javed Paracha ◽  
Akhtar Kalam

This chapter is about the intelligent techniques for the analysis of power quality problems in electrical power distribution system. The problems related with electrical power industry are becoming more widespread, complex, and diversified. The behaviour of power distribution systems can be monitored effectively using artificial intelligence techniques and methodologies. There is a need of understanding the power system operations from power utility perspectives and application of computational intelligence methods to solve the problems of the power industry. The real power quality (PQ) data is taken from a power utility in Victoria Australia. Principal Component Analysis Technique (PCAT) is used to reduce the large number of PQ data attributes of the power distribution system. After the pre-processing of PQ data using PCAT, intelligent computational techniques will be used for the analysis of power quality data. Neural network techniques will be employed to estimate the values of PQ parameters of the power distribution system. The Feed Forward Back Propagation (FFBP) neural network and Recurrent Neural Networks (RNN) are used for intelligent estimation of PQ data. The results obtained through these intelligent techniques are compared with the real data of power utility in Victoria, Australia for stability, reliability and enhanced power systems performance.


2019 ◽  
Vol 28 ◽  
pp. 01037 ◽  
Author(s):  
Maciej Kozak

The paper presents the background and results of numerical simulation and experimental research of a system using auctioneering diodes used to distribute the electrical power between two power converters connected with intermediate circuits in parallel, direct connection. Presented non-isolated power distribution system which utilizes blocking diodes placed in DC branches are used in the selected ship's electrical systems, however, they create problems related to control and handling ground faults. Another issue occurring during the operation of this type of systems is increased heat dissipation while diodes switching. Selected problems related to the operation of experimental system have been identified by means of simulation studies and experiments carried out in a 11 kVA laboratory system and the theoretical basis along with results are provided in the article.


Author(s):  
Pratul Arvind ◽  
Rudra prakash Maheswari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. A Fuzzy c-mean (FCM) and statistical based approach has been used. Samples are transformed as clusters by use of FCM and fed to Expectation- Maximization (EM) algorithm for classifying and locating faults in an unbalanced distribution system. Further, it is to be kept in mind that the combination has not been used for the above purpose as per the literature available till date.


The concept of smart grid to transform the old power grid into a smart and intelligent electric power distribution system is, currently, a hot research topic. Smart grid offers the merging of electrical power engineering technologies with network communications. Game theory has featured as an interesting technique, adopted by many researchers, to establish effective smart grid communications. The use of game theory has offered solutions to various decision-making problems, ranging from distributed load management to micro storage management in smart grid. Interestingly, different researchers have different objectives or problem scopes for adopting game theory in smart grid. This chapter explores the game-based approach.


Sign in / Sign up

Export Citation Format

Share Document