Study of Uncoated and Coated Carbide Insert on Tool Life, Surface Roughness and Material Removal Rate in Machining of EN27 steel

2015 ◽  
Vol 15 (2) ◽  
pp. 205-214
Author(s):  
Anil Ghubade ◽  
Ajay Gupta ◽  
Abhishek Abrol ◽  
Satsimran Singh

AbstractMetal cutting industries are facing challenges to increase production rate at minimum cost with improvement in quality in the final product. The increasing need of productivity, closed tolerance, dimensional stability and cost put tremendous pressure on manufacturing industries to design and develop new technologies to meet the required goal. Hence, coating over the existing tool plays an important role in achieving higher production rate, better tool life and minimization in cost. In this paper, we analyzed the effect of uncoated and coated carbide (triple and six layer coated) tool on tool life, surface roughness and material removal rate during dry turning of EN27 steel. Taguchi approach is used to find the best optimum parameter setting for turning of EN27 steel. A L9 orthogonal array, signal-to-noise ratio and ANOVA are applied to study machining parameters (Spindle speed, Feed rate and Depth of cut) in consideration of tool life (VB), material removal rate (MRR) and surface finish (Ra). The experimental investigation shows that the best machining performance is achieved by six layer coated carbide insert compared to uncoated and triple coated carbide insert under the selected machining conditions.

2021 ◽  
Author(s):  
S. S Kulkarni ◽  
Sarika Sharma

This paper represents the optimization method utilized in machining process for figuring out the most advantageous manner design. Typically, the technique layout parameters in machining procedures are noticeably few turning parameters inclusive of reducing velocity, feed and depth. The optimization of speed, feed depth of cut is very tough because of several other elements associated with processing situations and form complexities like surface Roughness, material removal rate (MRR) that are based Parameters. On this task a new fabric glass fibre composite is introduced through which could lessen costing of manufacturing and time and additionally it will boom the technique of productiveness. Composite substances have strength, stiffness, light weight, which gives the large scope to engineering and technology. The proposed research work targets to analyze turning parameters of composite material. The machining parameters are very important in manufacturing industries. The present research work is optimized surface roughness of composite material specifically in turning procedure with the aid of changing parameter including intensity of reduce, slicing velocity and feed price and additionally expect the mechanical houses of composite material. The RSM optimization is important because it evaluates the effects of multiple factors and their interactions on one or more responsive variables. It is observed that the material removal rate increases and surface roughness decreases as per the increase of Spindle speed and feed rate.


Author(s):  
Amar ul Hassan Khawaja ◽  
Mirza Jahanzaib ◽  
Shahzad Zaka

The aim of this research is to study the machinability aspects of hardened AISI 4340 High Strength Low Alloy (HSLA) steel (50 ± 2 HRC (Hardness Rockwell C)). The experimental investigation using coated carbide inserts is carried out during the dry hard milling process in a sustainable environment. The input parameters in the study are speed, feed rate and depth of cut and the responses are Average surface Roughness (Ra) and Material Removal Rate (MRR) that are selected through screening. Central Composite Design (CCD) in response surface methodology has been utilized as the experimental design technique with twenty experiments. Analysis of variance has been employed to examine the momentous machining parameters and responses. A mathematical model has been developed to optimize the surface roughness and material removal rate. It has been observed that the most significant factor for Ra is feed rate while for MRR depth of cut is the most significant factor. The results show that the minimum value of Ra ~ 0.098 μm is achieved at speed ~ 1000 RPM, feed rate ~ 300 mm/min and depth of cut ~ 0.2 mm while the maximum value of MRR ~ 6.35 cm3/min is attained at feed rate ~ 500mm/min and depth of cut ~ 0.4 mm regarding less or no effect of speed ~ 500-1000 RPM. The average forecast error for the validation information has been observed to be 3.35%. for Ra and 3.2% for MRR. Further, it is investigated that good surface finish like grinding and dimensional accuracy can be achieved with coated carbide tools.


Author(s):  
Mustafa Mohammed Abdulrazaq ◽  
Adil Shabeeb Jaber ◽  
Ahmed Salman Hammood ◽  
Ahmed Ghazi Abdulameer

The objective of this work is the investigation of milling process variables which resulting in optimal values of the surface roughness and material removal rate during machining of 7024 Al-alloy. The machining operation implemented on C-TEK CNC milling machine. The effects of the selected parameters on the chosen characteristics have been accomplished using Taguchi’s parameter design approach; also ANOVA had been used to evaluate the contribution of each parameter on the process outputs. Different feed rates are used ranging from (60, 80 and 100) mm/min, found that high feed rates gives a high material removal rates and good surface roughness. On the other hand, using three levels of spindle speeds found that a higher spindle speeds gives better surface roughness with a little effect on MRR. The process results showed that maximum MRR achieved (2.40) mm3/min when machining feed rate (100) mm/min, spindle speed (1000) r.p.m, and depth of cut (0.6) mm while good surface roughness (0.41 µm) when machining feed rate (100) mm/min, spindle speed (1000) r.p.m, and depth of cut (0.2) mm. The level of importance of the machining parameters for material removal rate and surface roughness and is determined by using Taguchi designing experiments and the variance analysis (ANOVA).


2019 ◽  
Vol 63 (2) ◽  
pp. 132-139
Author(s):  
Santosh Madival ◽  
Manjunath Lingappa Halappa ◽  
Mohammed Riyaz Ahmed ◽  
Lokesha Marulaiah

In the machining industry, coolant has an important role due to their lubrication, cooling and chip removal functions. Using coolant can improve machining process efficiency, tool life, surface quality and it can reduce cutting forces and vibrations. However, health and environmental problems are encountered with the use of coolants. Hence, there has been a high demand for deep cryogenic treatment to reduce these harmful effects. For this purpose, −196 °C LN2 gas is used to improve machining performance. This study focuses on the prediction of surface roughness and material removal rate with cryogenically treated M2 HSS tool using fuzzy logic and regression model. The turning experiments are conducted according to Taguchi's L9 orthogonal array. Surface roughness and material removal rate during machining of C45 steel with HSS tool are measured. Cutting speed, feed rate, and depth of cut are considered as machining parameters. A model depended on a regression model is established and the results obtained from the regression model are compared with the results based on fuzzy logic and experiment. The effectiveness of regression models and fuzzy logic has been determined by analyzing the correlation coefficient and by comparing experimental results. Regression model gives closer values to experimentally measured values than fuzzy logic. It has been concluded that regression-based modeling can be used to predict the surface roughness successfully.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


Author(s):  
Zhongde Shi ◽  
Amr Elfizy ◽  
Helmi Attia ◽  
Gilbert Ouellet

This paper reports an experimental study on grinding of chromium carbide coatings using electroplated diamond wheels. The work was motivated by machining carbide coatings in gas turbine engine applications. The objective is to explore the process conditions and parameters satisfying the ground surface quality requirements. Surface grinding experiments were conducted with water-based grinding fluid on chromium carbide coated on flat surfaces of aluminum blocks for rough grinding at a fixed wheel speed vs = 30 m/s, and finish grinding at vs = 30, 60 m/s. The effects of depth of cut and workspeed on grinding power, forces, and surface roughness were investigated for each of the wheel speeds. Material removal rate Q = 20 mm3/s for rough grinding at a grinding width b = 101.6 mm was achieved. It was found that the maximum material removal rate achievable in rough grinding was restricted by chatters, which was mainly due to the large grinding width. The specific energy ranged from 27 to 59 J/mm3 under the tested conditions. Surface roughness Ra = 3.5–3.8 μm were obtained for rough grinding, while Ra = 0.6–1.5 μm were achieved for finish grinding. Surface roughness was not sensitive to grinding parameters under the tested conditions, but was strongly dependent on the diamond grain sizes. Imposing axial wheel oscillations to the grinding motions reduced surface roughness by about 60% under the tested condition. It was proved that it is feasible to grind the chromium carbide coating with electroplated diamond wheels.


Sign in / Sign up

Export Citation Format

Share Document