Buoyancy-Driven Rayleigh–Taylor Instability in a Vertical Channel

2018 ◽  
Vol 43 (4) ◽  
pp. 289-300 ◽  
Author(s):  
Noufe H. Aljahdaly ◽  
Layachi Hadji

Abstract Suppose that a vertical tube is composed of two chambers that are separated by a retractable thermally insulated thin membrane. The upper and lower chambers are filled with an incompressible fluid and maintained at temperatures {T_{c}} and {T_{h}}>{T_{c}}, respectively. Upon removal of the membrane, the two fluid masses form an unstably stratified Rayleigh–Taylor-type configuration with cold and heavy fluid overlying a warmer and lighter fluid and separated by an interface across which there is a discontinuity in the density. Due to the presence of an initial discontinuity between two homogeneous states, this problem is mathematically homologous to that of the shock tube problem with the thermal expansion playing the role of pressure. When the two fluid regions are brought directly into contact with each other and the transient interfacial fluctuations have subsided, we show the emergence of a stationary state of convection through a supercritical bifurcation provided a threshold value for the temperature difference is exceeded. We suggest a possible way for the experimental testing of the theoretical results put forth in this paper.

2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


Econometrics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 26
Author(s):  
Jennifer L. Castle ◽  
Jurgen A. Doornik ◽  
David F. Hendry

We investigate forecasting in models that condition on variables for which future values are unknown. We consider the role of the significance level because it guides the binary decisions whether to include or exclude variables. The analysis is extended by allowing for a structural break, either in the first forecast period or just before. Theoretical results are derived for a three-variable static model, but generalized to include dynamics and many more variables in the simulation experiment. The results show that the trade-off for selecting variables in forecasting models in a stationary world, namely that variables should be retained if their noncentralities exceed unity, still applies in settings with structural breaks. This provides support for model selection at looser than conventional settings, albeit with many additional features explaining the forecast performance, and with the caveat that retaining irrelevant variables that are subject to location shifts can worsen forecast performance.


2021 ◽  
Vol 87 (3) ◽  
Author(s):  
Joseph Olson ◽  
Jan Egedal ◽  
Michael Clark ◽  
Douglass A. Endrizzi ◽  
Samuel Greess ◽  
...  

Magnetic reconnection is explored on the Terrestrial Reconnection Experiment (TREX) for asymmetric inflow conditions and in a configuration where the absolute rate of reconnection is set by an external drive. Magnetic pileup enhances the upstream magnetic field of the high-density inflow, leading to an increased upstream Alfvén speed and helping to lower the normalized reconnection rate to values expected from theoretical consideration. In addition, a shock interface between the far upstream supersonic plasma inflow and the region of magnetic flux pileup is observed, important to the overall force balance of the system, thereby demonstrating the role of shock formation for configurations including a supersonically driven inflow. Despite the specialized geometry where a strong reconnection drive is applied from only one side of the reconnection layer, previous numerical and theoretical results remain robust and are shown to accurately predict the normalized rate of reconnection for the range of system sizes considered. This experimental rate of reconnection is dependent on system size, reaching values as high as 0.8 at the smallest normalized system size applied.


2021 ◽  
Author(s):  
Aditya Varma ◽  
Binod Sreenivasan

&lt;p&gt;It is known that the columnar structures in rapidly rotating convection are affected by the magnetic field in ways that enhance their helicity. This may explain the dominance of the axial dipole in rotating dynamos. Dynamo simulations starting from a small seed magnetic field have shown that the growth of the field is accompanied by the excitation of convection in the energy-containing length scales. Here, this process is studied by examining axial wave motions in the growth phase of the dynamo for a wide range of thermal forcing. In the early stages of evolution where the field is weak, fast inertial waves weakly modified by the magnetic field are abundantly present. As the field strength(measured by the ratio of the Alfven wave to the inertial wave frequency) exceeds a threshold value, slow magnetostrophic waves are spontaneously generated. The excitation of the slow waves coincides with the generation of helicity through columnar motion, and is followed by the formation of the axial dipole from a chaotic, multipolar state. In strongly driven convection, the slow wave frequency is attenuated, causing weakening of the axial dipole intensity. Kinematic dynamo simulations at the same parameters, where only fast inertial waves are present, fail to produce the axial dipole field. The dipole field in planetary dynamos may thus be supported by the helicity from slow magnetostrophic waves.&lt;/p&gt;


2020 ◽  
Vol 58 (11) ◽  
Author(s):  
Matthew J. Binnicker

ABSTRACT The coronavirus disease (COVID-19) pandemic has placed the clinical laboratory and testing for SARS-CoV-2 front and center in the worldwide discussion of how to end the outbreak. Clinical laboratories have responded by developing, validating, and implementing a variety of molecular and serologic assays to test for SARS-CoV-2 infection. This has played an essential role in identifying cases, informing isolation decisions, and helping to curb the spread of disease. However, as the demand for COVID-19 testing has increased, laboratory professionals have faced a growing list of challenges, uncertainties, and, in some situations, controversy, as they have attempted to balance the need for increasing test capacity with maintaining a high-quality laboratory operation. The emergence of this new viral pathogen has raised unique diagnostic questions for which there have not always been straightforward answers. In this commentary, the author addresses several areas of current debate, including (i) the role of molecular assays in defining the duration of isolation/quarantine, (ii) whether the PCR cycle threshold value should be included on patient reports, (iii) if specimen pooling and testing by research staff represent acceptable solutions to expand screening, and (iv) whether testing a large percentage of the population is feasible and represents a viable strategy to end the pandemic.


2020 ◽  
Vol 637 ◽  
pp. A97
Author(s):  
B. Snow ◽  
A. Hillier

Context. The plasma of the lower solar atmosphere consists of mostly neutral particles, whereas the upper solar atmosphere is mostly made up of ionised particles and electrons. A shock that propagates upwards in the solar atmosphere therefore undergoes a transition where the dominant fluid is either neutral or ionised. An upwards propagating shock also passes a point where the sound and Alfvén speed are equal. At this point the energy of the acoustic shock can separated into fast and slow components. The way the energy is distributed between the two modes depends on the angle of magnetic field. Aims. We aim to investigate the separation of neutral and ionised species in a gravitationally stratified atmosphere. The role of two-fluid effects on the structure of the shocks post-mode-conversion and the frictional heating is quantified for different levels of collisional coupling. Methods. Two-fluid numerical simulations were performed using the (PIP) code of a wave steepening into a shock in an isothermal, partially-ionised atmosphere. The collisional coefficient was varied to investigate the regimes where the plasma and neutral species are weakly, strongly, and finitely coupled. Results. The propagation speeds of the compressional waves hosted by neutral and ionised species vary and, therefore, velocity drift between the two species is produced as the plasma attempts to propagate faster than the neutrals. This is most extreme for a fast-mode shock. We find that the collisional coefficient drastically impacts the features present in the system, specifically the mode conversion height, type of shocks present, and the finite shock widths created by the two-fluid effects. In the finitely-coupled regime, fast-mode shock widths can exceed the pressure scale height, which may lead to a new potential observable of two-fluid effects in the lower solar atmosphere.


2020 ◽  
Vol 634 ◽  
pp. A96
Author(s):  
E. Vickers ◽  
I. Ballai ◽  
R. Erdélyi

Aims. We investigate the nature of the magnetic Rayleigh–Taylor instability at a density interface that is permeated by an oblique homogeneous magnetic field in an incompressible limit. Methods. Using the system of linearised ideal incompressible magnetohydrodynamics equations, we derive the dispersion relation for perturbations of the contact discontinuity by imposing the necessary continuity conditions at the interface. The imaginary part of the frequency describes the growth rate of waves due to instability. The growth rate of waves is studied by numerically solving the dispersion relation. Results. The critical wavenumber at which waves become unstable, which is present for a parallel magnetic field, disappears because the magnetic field is inclined. Instead, waves are shown to be unstable for all wavenumbers. Theoretical results are applied to diagnose the structure of the magnetic field in prominence threads. When we apply our theoretical results to observed waves in prominence plumes, we obtain a wide range of field inclination angles, from 0.5° up to 30°. These results highlight the diagnostic possibilities that our study offers.


1992 ◽  
Vol 114 (4) ◽  
pp. 928-935 ◽  
Author(s):  
C. Gau ◽  
K. A. Yih ◽  
W. Aung

Buoyancy-assisted convection flow and heat transfer processes in a heated vertical channel are studied experimentally for situations where the buoyancy parameter Gr/Re2 is relatively large. The channel wall is made of two parallel plates, with one wall heated uniformly and the opposite wall insulated. A uniform air flow is made to enter the channel from the bottom. The reversed flow is visualized, which occurs initially near the channel exit for the case when Gr/Re2 is greater than a threshold value. The cold reversed flow enters the channel from the outside and forms a V-shaped recirculating flow region in the downstream part of the duct. This region gradually propagates upstream as the buoyancy parameter Gr/Re2 increases. The counterflow motion, leading to mixing between the heated buoyant fluid and the V-shaped recirculation, is shown to be highly unstable and characterized by generation of eddies and vortices when the value of Gr/Re2 is large. An increase in Re has the effect of pushing the reversed flow downstream and making the recirculating region wider. Temperature fluctuations are measured to provide insight into the complex phenomena being studied. The penetration depth of the reversed flow is measured and compared with prediction based on a simple model. Local and average Nusselt numbers are also measured and presented.


Sign in / Sign up

Export Citation Format

Share Document