scholarly journals An Influence of Parameters of Micro-electrical Discharge Machining on Wear of Tool Electrode

2017 ◽  
Vol 64 (2) ◽  
pp. 149-163 ◽  
Author(s):  
Govindan Puthumana

AbstractTo achieve better precision of features generated using the micro-electrical discharge machining (micro-EDM), there is a necessity to minimize the wear of the tool electrode, because a change in the dimensions of the electrode is reflected directly or indirectly on the feature. This paper presents a novel modeling and analysis approach of the tool wear in micro-EDM using a systematic statistical method exemplifying the influences of capacitance, feed rate and voltage on the tool wear ratio. The association between tool wear ratio and the input factors is comprehended by using main effect plots, interaction effects and regression analysis. A maximum variation of four-fold in the tool wear ratio have been observed which indicated that the tool wear ratio varies significantly over the trials. As the capacitance increases from 1 to 10 nF, the increase in tool wear ratio is by 33%. An increase in voltage as well as capacitance would lead to an increase in the number of charged particles, the number of collisions among them, which further enhances the transfer of the proportion of heat energy to the tool surface. Furthermore, to model the tool wear phenomenon, a regression relationship between tool wear ratio and the process inputs has been developed.

2013 ◽  
Vol 470 ◽  
pp. 585-588 ◽  
Author(s):  
Min Zhang ◽  
Qin He Zhang ◽  
De Zheng Kong ◽  
Yang Ren

Electro-arc machining is similar with traditional electrical discharge machining (EDM) while the pulse duration of electro-arc machining is longer than that of EDM. The longer discharge was named arcing, and the arcing could lead to high material remove rate (MRR) and low tool wear ratio (TWR). Processing factors including discharge medium, tool polarity, tool material, voltage and rotational speed were chosen as input parameters on MRR and TWR. Taguchis method was used to evaluate their effects. All of the five processing factors had effects on MRR and TWR. The effects and the mechanism are also discussed.


2013 ◽  
Vol 770 ◽  
pp. 183-188 ◽  
Author(s):  
Min Zhang ◽  
Qin He Zhang ◽  
De Zheng Kong ◽  
Xue Bai

RC-pulse generator has a simple structure and it is easy to be made and repaired. Especially RC-pulse generator can provide high frequency and low energy discharges. Therefore RC-pulse generators are used in micro-EDM field. But its high tool wear ratio and low efficiency restrict its applications. Ringing effect is considered to have effect on the defects. This research was done to study the ringing effect in electrical discharge. Taguchi method was used and discharge curves of voltage and current were recorded and analyzed. Ringing effect plays a key role in discharges and reversed current. A waveform model established with ringing effect theory is almost the same as the waveforms recorded in the experiment. Reversed current exists in almost a half time of discharge period which is the representation of ringing effect. Suitable process parameters can reduce reversed current and proper improvements could eliminate reversed current which will reduce the tool wear ratio and increase the efficiency in RC-pulse generator.


2012 ◽  
Vol 268-270 ◽  
pp. 82-86
Author(s):  
Jing Jing Zhang ◽  
Kai Yong Jiang ◽  
Jie Yan ◽  
Fei Wang ◽  
Xiao Wei Wang

This paper is to explore the feasibility of TiN/Cu-based composite materials as electrical discharge machining (EDM) electrodes.The tool wear ratio (TWR) of EDM electrode directly reflects the machining precision. To reduce the tool wear ratio(TWR) of Cu electrode in the EDM processing, Inorganic mixture of different content of ceramic materials TiN powder and Cu powder are prepared , then pressed and sintered into EDM electrodes.Experimental results show that: in the six batchs of experiments, the tool wear ratio (TWR) of 35%TiN/Cu electrode is the least, which is about 4.98%, much less than that of commercial copper electrode . The microstructures of the TiN/Cu electrodes after electrical discharge machining (EDM) as well are analyzed in this paper.


2009 ◽  
Vol 69-70 ◽  
pp. 177-181
Author(s):  
Zi Long Peng ◽  
Zhen Long Wang ◽  
Ying Huai Dong ◽  
Hui Chen

Based on the principle of micro electrical discharge machining (EDM), a reversible machining method is proposed, which can achieve depositing or removing selectively metal material for the fabrication of micro structures. It is easy to transform the machining process from deposition to removal in one machining system. The characteristics of the deposited material show that the components of deposited material are almost the same as those of the tool electrode, and the metallurgical bonding has formed on the interface between the deposited material and the base. Moreover, the deposited material has well machinability in different micro EDM selective removal process, including micro EDM die-sinking and micro EDM milling. As a result, a micro square column with 0.1mm in side length, 0.88mm in height and a micro cylinder with 0.14mm in diameter, 1.18mm in height were fabricated by using the micro reversible EDM process.


2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


2012 ◽  
Vol 472-475 ◽  
pp. 2401-2404 ◽  
Author(s):  
Guo Zheng Zhu ◽  
Ji Cheng Bai ◽  
Yong Feng Guo ◽  
Peng Ju Hou ◽  
Chao Jiang Li

As demands for the micro array holes in modern industry and the characteristics of micro Electrical Discharge Machining (micro EDM), a new type micro EDM machine tool used to machine micro array holes was designed and manufactured. The machine tool contains following systems: the mechanism system, the control system, the pulse generator system and other auxiliary systems. Each system was studied respectively. Base on a large number of experiments, finally, a sample with 256 array holes was processed by the machine tool. The diameter of single hole is 45µm and precision of the holes is ±1µm. The sample has been successfully applied to R & D test of micro nozzle components


2015 ◽  
Vol 651-653 ◽  
pp. 759-764
Author(s):  
Oliver Kröning ◽  
Mathias Herzig ◽  
Matthias Hackert-Oschätzchen ◽  
Ralf Kühn ◽  
Henning Zeidler ◽  
...  

Micro EDM (Electrical Discharge Machining) is a known nonconventional process for the machining of hard to cut materials. Due to its ablating nature based on melting and evaporation through heat induced by electrical discharges, it can function independently of the hardness, toughness or brittleness of the workpiece. Thus micro EDM is a possible process to fulfill the requirements of higher precision and high quality in carbide metal machining. Thereby the surface and the roughness of machined carbide metals depend on the discharge energy used. For machining carbide metals with high surface quality pulse generators with ultra-short discharges are required. This paper presents the development of a two-staged pulse generator with the ability to provide ultra-short pulses by using a two-staged pulse. The current and voltage signals of the discharges were recorded and their characteristics were analyzed.


Sign in / Sign up

Export Citation Format

Share Document