Entropy as an integral operator

2019 ◽  
Vol 69 (1) ◽  
pp. 139-146
Author(s):  
Mehdi Rahimi

Abstract In this paper, we introduce the concept of entropy kernel operator for compact dynamical systems of finite Kolmogorov entropy. It is a compact positive operator on a Hilbert space. Then we state the Kolmogorov entropy in terms of the eigenvalues of the entropy kernel operator.

2018 ◽  
Vol 34 ◽  
pp. 444-458
Author(s):  
Michael Orlitzky

Let $K$ be a closed convex cone with dual $\dual{K}$ in a finite-dimensional real Hilbert space. A \emph{positive operator} on $K$ is a linear operator $L$ such that $L\of{K} \subseteq K$. Positive operators generalize the nonnegative matrices and are essential to the Perron-Frobenius theory. It is said that $L$ is a \emph{\textbf{Z}-operator} on $K$ if % \begin{equation*} \ip{L\of{x}}{s} \le 0 \;\text{ for all } \pair{x}{s} \in \cartprod{K}{\dual{K}} \text{ such that } \ip{x}{s} = 0. \end{equation*} % The \textbf{Z}-operators are generalizations of \textbf{Z}-matrices (whose off-diagonal elements are nonpositive) and they arise in dynamical systems, economics, game theory, and elsewhere. In this paper, the positive and \textbf{Z}-operators are connected. This extends the work of Schneider, Vidyasagar, and Tam on proper cones, and reveals some interesting similarities between the two families.


1982 ◽  
Vol 120 ◽  
pp. 155-183 ◽  
Author(s):  
Jon Lee

We have investigated a sequence of dynamical systems corresponding to spherical truncations of the incompressible three-dimensional Navier-Stokes equations in Fourier space. For lower-order truncated systems up to the spherical truncation of wavenumber radius 4, it is concluded that the inviscid Navier-Stokes system will develop mixing (and a fortiori ergodicity) on the constant energy-helicity surface, and also isotropy of the covariance spectral tensor. This conclusion is, however, drawn not directly from the mixing definition but from the observation that one cannot evolve the trajectory numerically much beyond several characteristic corre- lation times of the smallest eddy owing to the accumulation of round-off errors. The limited evolution time is a manifestation of trajectory instability (exponential orbit separation) which underlies not only mixing, but also the stronger dynamical charac- terization of positive Kolmogorov entropy (K-system).


2004 ◽  
Vol 2 (1) ◽  
pp. 71-95 ◽  
Author(s):  
George Isac ◽  
Monica G. Cojocaru

In the first part of this paper we present a representation theorem for the directional derivative of the metric projection operator in an arbitrary Hilbert space. As a consequence of the representation theorem, we present in the second part the development of the theory of projected dynamical systems in infinite dimensional Hilbert space. We show that this development is possible if we use the viable solutions of differential inclusions. We use also pseudomonotone operators.


2017 ◽  
Vol 26 (2) ◽  
pp. 115-124
Author(s):  
Arzu Akgül

In the present paper, we introduce and investigate a new class of meromorphic functions associated with an integral operator, by using Hilbert space operator. For this class, we obtain coefficient inequality, extreme points, radius of close-to-convex, starlikeness and convexity, Hadamard product and integral means inequality.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jia Cai

We investigate a coefficient-based least squares regression problem with indefinite kernels from non-identical unbounded sampling processes. Here non-identical unbounded sampling means the samples are drawn independently but not identically from unbounded sampling processes. The kernel is not necessarily symmetric or positive semi-definite. This leads to additional difficulty in the error analysis. By introducing a suitable reproducing kernel Hilbert space (RKHS) and a suitable intermediate integral operator, elaborate analysis is presented by means of a novel technique for the sample error. This leads to satisfactory results.


1991 ◽  
Vol 11 (4) ◽  
pp. 779-786 ◽  
Author(s):  
Dan Voiculescu

In the papers [9, 10, 3, 11] on perturbations of Hilbert space operators, we studied an invariant (τ) where is a normed ideal of compact operators and τ a family of operators. The size of an ideal for which (τ) vanishes or does not vanish is an upper, respectively lower, bound for a kind of dimension of τ. In the case of systems of commuting self-adjoint operators τ, the results of [9,3] relate (τ) with (an ideal slightly smaller than the Schatten von Neumann class ) to the way the spectral measure of τ compares to p-dimensional Hausdorff measure.


2020 ◽  
Vol 6 (16) ◽  
pp. eaaw6664 ◽  
Author(s):  
Armin Tavakoli ◽  
Massimiliano Smania ◽  
Tamás Vértesi ◽  
Nicolas Brunner ◽  
Mohamed Bourennane

Self-testing represents the strongest form of certification of a quantum system. Here, we theoretically and experimentally investigate self-testing of nonprojective quantum measurements. That is, how can one certify, from observed data only, that an uncharacterized measurement device implements a desired nonprojective positive-operator valued measure (POVM). We consider a prepare-and-measure scenario with a bound on the Hilbert space dimension and develop methods for (i) robustly self-testing extremal qubit POVMs and (ii) certifying that an uncharacterized qubit measurement is nonprojective. Our methods are robust to noise and thus applicable in practice, as we demonstrate in a photonic experiment. Specifically, we show that our experimental data imply that the implemented measurements are very close to certain ideal three- and four-outcome qubit POVMs and hence non-projective. In the latter case, the data certify a genuine four-outcome qubit POVM. Our results open interesting perspective for semi–device-independent certification of quantum devices.


Sign in / Sign up

Export Citation Format

Share Document