Central lifting property for orthomodular lattices

2020 ◽  
Vol 70 (6) ◽  
pp. 1307-1316
Author(s):  
Neda Arjomand Kermani ◽  
Esfandiar Eslami ◽  
Arsham Borumand Saeid

AbstractWe introduce and investigate central lifting property (CLP) for orthomodular lattices as a property whereby all central elements can be lifted modulo every p-ideal. It is shown that prime ideals, maximal ideals and finite p-ideals have CLP. Also Boolean algebras, simple chain finite orthomodular lattices, subalgebras of an orthomodular lattices generated by two elements and finite orthomodular lattices have CLP. The main results of the present paper include the investigation of CLP for principal p-ideals and finite direct products of orthomodular lattices.

2008 ◽  
Vol 77 (3) ◽  
pp. 477-483
Author(s):  
D. D. ANDERSON ◽  
JOHN KINTZINGER

AbstractLet R and S be commutative rings, not necessarily with identity. We investigate the ideals, prime ideals, radical ideals, primary ideals, and maximal ideals of R×S. Unlike the case where R and S have an identity, an ideal (or primary ideal, or maximal ideal) of R×S need not be a ‘subproduct’ I×J of ideals. We show that for a ring R, for each commutative ring S every ideal (or primary ideal, or maximal ideal) is a subproduct if and only if R is an e-ring (that is, for r∈R, there exists er∈R with err=r) (or u-ring (that is, for each proper ideal A of R, $\sqrt {A}\not =R$)), the Abelian group (R/R2 ,+) has no maximal subgroups).


2021 ◽  
Vol 3 (1) ◽  
pp. 23-28
Author(s):  
Pascal Pankiti ◽  
C Nkuimi-Jugnia

The notion of quantale, which designates a complete lattice equipped with an associative binary multiplication distributing over arbitrary joins, appears in various areasof mathematics-in quantaloid theory, in non classical logic as completion of the Lindebaum algebra, and in different representations of the spectrum of a C∗ algebra asmany-valued and non commutative topologies. To put it briefly, its importance is nolonger to be demonstrated. Quantales are ring-like structures in that they share withrings the common fact that while as rings are semi groups in the tensor category ofabelian groups, so quantales are semi groups in the tensor category of sup-lattices.In 2008 Anderson and Kintzinger [1] investigated the ideals, prime ideals, radical ideals, primary ideals, and maximal of a product ring R × S of two commutativenon non necceray unital rings R and S: Something resembling rings are quantales byanalogy with what is studied in ring, we begin an investigation on ideals of a productof two quantales. In this paper, given two quantales Q1 and Q2; not necessarily withidentity, we investigate the ideals, prime ideals, primary ideals, and maximal ideals ofthe quantale Q1 × Q2


1971 ◽  
Vol 22 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Karel Prikry

1979 ◽  
Vol 31 (5) ◽  
pp. 961-985 ◽  
Author(s):  
Günter Bruns

Introduction. Every orthomodular lattice (abbreviated : OML) is the union of its maximal Boolean subalgebras (blocks). The question thus arises how conversely Boolean algebras can be amalgamated in order to obtain an OML of which the given Boolean algebras are the blocks. This question we deal with in the present paper.The problem was first investigated by Greechie [6, 7, 8, 9]. His technique of pasting [6] will also play an important role in this paper. A case solved completely by Greechie [9] is the case that any two blocks intersect either in the bounds only or have the bounds, an atom and its complement in common. This is, of course, a very special situation. The more surprising it is that Greechie's methods, if skillfully applied, yield considerable insight into the structure of OMLs and provide a seemingly unexhaustible source for counter-examples.


2019 ◽  
Vol 24 (2) ◽  
pp. 723-729
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract In a previous paper, the authors defined two binary term operations in orthomodular lattices such that an orthomodular lattice can be organized by means of them into a left residuated lattice. It is a natural question if these operations serve in this way also for more general lattices than the orthomodular ones. In our present paper, we involve two conditions formulated as simple identities in two variables under which this is really the case. Hence, we obtain a variety of lattices with a unary operation which contains exactly those lattices with a unary operation which can be converted into a left residuated lattice by use of the above mentioned operations. It turns out that every lattice in this variety is in fact a bounded one and the unary operation is a complementation. Finally, we use a similar technique by using simpler terms and identities motivated by Boolean algebras.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


2013 ◽  
Vol 06 (03) ◽  
pp. 1350035
Author(s):  
M. Sambasiva Rao

The concept of normal C-algebras is introduced. The class of all normal C-algebras is characterized in terms of minimal prime ideals. Direct products of normal C-algebras are studied. A congruence is introduced in terms of multiplicative sets and an equivalency between the normalities of C-algebras and the respective quotient algebras is observed.


1974 ◽  
Vol 11 (3) ◽  
pp. 429-441 ◽  
Author(s):  
Anne P. Grams

Let G be an abelian group, and let S be a subset of G. Necessary and sufficient conditions on G and S are given in order that there should exist a Dedekind domain D with class group G with the property that S is the set of classes that contain maximal ideals of D. If G is a torsion group, then S is the set of classes containing the maximal ideals of D if and only if S generates G. These results are used to determine necessary and sufficient conditions on a family {Hλ} of subgroups of G in order that there should exist a Dedekind domain D with class group G such that {G/Hλ} is the family of class groups of the set of overrings of D. Several applications are given.


Sign in / Sign up

Export Citation Format

Share Document