scholarly journals Are there bound states in the continuum in a dielectric ring?

2021 ◽  
Vol 2015 (1) ◽  
pp. 012017
Author(s):  
D V Bochek ◽  
N S Solodovchenko ◽  
K B Samusev ◽  
M F Limonov

Abstract Trapping and confining electromagnetic waves is important in both basic research and a variety of applications. For these purposes, various physical mechanisms are exploited including bound states in the continuum, which have been actively investigated recently. Bound states in the continuum have been observed in various objects consisting of both one and a number of dielectric structures. In particular, these photonic states were observed in high-contrast dielectric cylinders in the regime of strong eigenmode coupling, which leads to destructive interference in the far-field zone. In this article, we present the results of a study of bound states in a continuum in a dielectric ring, i.e. cylinder with coaxial air hole. The dependence of the quality factor Q on the normalized diameter of the hole is discussed.

Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 725-745 ◽  
Author(s):  
Kirill Koshelev ◽  
Gael Favraud ◽  
Andrey Bogdanov ◽  
Yuri Kivshar ◽  
Andrea Fratalocchi

AbstractNonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics but have received very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of light-matter interaction at the nanoscale. This review paper provides a general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical anapoles and photonic bound states in the continuum. We discuss a brief history of these states in optics, as well as their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-Q resonances, nonlinear wave mixing, and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chi Zhang ◽  
Qiang Liu ◽  
Xiao Peng ◽  
Zhengbiao Ouyang ◽  
Suling Shen

Abstract Simultaneous realization of high quality factor (Q), sensitivity, and figure of merit (FOM) play a pivotal role in building the THz sensor. For such purpose, we propose an all-polymeric Bloch surface wave (BSW) structure that supports a bright BSW mode and a dark surface Fano state that is embedded in the continuum, both of which coupled to the same radiation channels. The existence of the sharp dip with a maximum depth of Fano line could be interpreted with the physics of Friedrich–Wintgen bound states in the continuum (FW-BICs), because of the destructive interference between bright BSW and dark surface Fano modes. A strong angular- and frequency-dependent Q was found. Related influential factors to Q value may also include an asymmetric arrangement of top and grating layers, together with the weak coupling provided by photonic crystals. One numerically optimized design shows a quality factor Q of the Fano mode as 23,670, which is almost two orders higher than that in conventional metallic-metamaterial-based designs. The optimized sensitivity can numerically reach 4.34 THz/RIU in the frequency domain, which is one order higher than that reported in all-dielectric metasurfaces. We infer the high sensitivity is related to the phase-matching condition provided by near-subwavelength gratings. The associated FOM can reach 8857/RIU. Besides, the proposed design also numerically demonstrates high sensitivity in the angular domain ∼125.5°/RIU. Considering it poses no specific requirement for materials that own high contrast of permittivity in the THz regime, large interfacing area, the mechanical and chemical robustness offered by polymers and low cost in fabrication, such all-polymeric BSW structure that supports novel Fano resonance in THz window may give access to rich applications in hazardous gas detection and label-free bio-sensing.


2015 ◽  
Vol 780 ◽  
pp. 370-387 ◽  
Author(s):  
A. A. Lyapina ◽  
D. N. Maksimov ◽  
A. S. Pilipchuk ◽  
A. F. Sadreev

We consider bound states in the continuum (BSCs) or embedded trapped modes in two- and three-dimensional acoustic axisymmetric duct–cavity structures. We demonstrate numerically that, under variation of the length of the cavity, multiple BSCs occur due to the Friedrich–Wintgen two-mode full destructive interference mechanism. The BSCs are detected by tracing the resonant widths to the points of the collapse of Fano resonances where one of the two resonant modes acquires infinite life-time. It is shown that the approach of the acoustic coupled mode theory cast in the truncated form of a two-mode approximation allows us to analytically predict the BSC frequencies and shape functions to a good accuracy in both two and three dimensions.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolay Solodovchenko ◽  
Kirill Samusev ◽  
Daria Bochek ◽  
Mikhail Limonov

Abstract Bound states in the continuum (BIC) have been at the forefront of research in optics and photonics over the past decade. It is of great interest to study the effects associated with quasi-BICs in the simplest structures, where quasi-BICs are very pronounced. An example is a dielectric cylinder, and in a number of works, quasi-BICs have been studied both in single cylinders and in structures composed of cylinders. In this work, we studied the properties of quasi-BICs during the transition from a homogeneous dielectric cylinder in an air environment to a ring with narrow walls while increasing the diameter of the inner air cylinder gradually. The results demonstrate the quasi-BIC crossover from the strong-coupling to the weak-coupling regime, which manifests itself in the transition from the avoided crossing of branches to their intersection with the quasi-BIC being preserved on only one straight branch. In the regime of strong-coupling and quasi-BIC, three waves interfere in the far-field zone: two waves corresponding to the resonant modes of the structure and the wave scattered by the structure as a whole. The validity of the Fano resonance concept is discussed since it describes the interference of only two waves under weak coupling conditions.


2019 ◽  
Vol 12 (12) ◽  
pp. 125002 ◽  
Author(s):  
Suxia Xie ◽  
Changzhong Xie ◽  
Song Xie ◽  
Jie Zhan ◽  
Zhijian Li ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
Abdoulaye Ndao ◽  
Liyi Hsu ◽  
Wei Cai ◽  
Jeongho Ha ◽  
Junhee Park ◽  
...  

AbstractOne of the key challenges in biology is to understand how individual cells process information and respond to perturbations. However, most of the existing single-cell analysis methods can only provide a glimpse of cell properties at specific time points and are unable to provide cell secretion and protein analysis at single-cell resolution. To address the limits of existing methods and to accelerate discoveries from single-cell studies, we propose and experimentally demonstrate a new sensor based on bound states in the continuum to quantify exosome secretion from a single cell. Our optical sensors demonstrate high-sensitivity refractive index detection. Because of the strong overlap between the medium supporting the mode and the analytes, such an optical cavity has a figure of merit of 677 and sensitivity of 440 nm/RIU. Such results facilitate technological progress for highly conducive optical sensors for different biomedical applications.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenhao Wang ◽  
Lucas V. Besteiro ◽  
Peng Yu ◽  
Feng Lin ◽  
Alexander O. Govorov ◽  
...  

Abstract Hot electrons generated in metallic nanostructures have shown promising perspectives for photodetection. This has prompted efforts to enhance the absorption of photons by metals. However, most strategies require fine-tuning of the geometric parameters to achieve perfect absorption, accompanied by the demanding fabrications. Here, we theoretically propose a Ag grating/TiO2 cladding hybrid structure for hot electron photodetection (HEPD) by combining quasi-bound states in the continuum (BIC) and plasmonic hot electrons. Enabled by quasi-BIC, perfect absorption can be readily achieved and it is robust against the change of several structural parameters due to the topological nature of BIC. Also, we show that the guided mode can be folded into the light cone by introducing a disturbance to become a guided resonance, which then gives rise to a narrow-band HEPD that is difficult to be achieved in the high loss gold plasmonics. Combining the quasi-BIC and the guided resonance, we also realize a multiband HEPD with near-perfect absorption. Our work suggests new routes to enhance the light-harvesting in plasmonic nanosystems.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 655-665
Author(s):  
Stephanie C. Malek ◽  
Adam C. Overvig ◽  
Sajan Shrestha ◽  
Nanfang Yu

AbstractActively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered “local” in that their operation depends on the responses of individual meta-units. In contrast, “nonlocal” metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive-index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront shaping requires neither unusual materials and fabrication nor active control of individual meta-units.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 998
Author(s):  
Diego R. Abujetas ◽  
José A. Sánchez-Gil

Resonant optical modes arising in all-dielectric metasurfaces have attracted much attention in recent years, especially when so-called bound states in the continuum (BICs) with diverging lifetimes are supported. With the aim of studying theoretically the emergence of BICs, we extend a coupled electric and magnetic dipole analytical formulation to deal with the proper metasurface Green function for the infinite lattice. Thereby, we show how to excite metasurface BICs, being able to address their near-field pattern through point-source excitation and their local density of states. We apply this formulation to fully characterize symmetry-protected BICs arising in all-dielectric metasurfaces made of Si nanospheres, revealing their near-field pattern and local density of states, and, thus, the mechanisms precluding their radiation into the continuum. This formulation provides, in turn, an insightful and fast tool to characterize BICs (and any other leaky/guided mode) near fields in all-dielectric (and also plasmonic) metasurfaces, which might be especially useful for the design of planar nanophotonic devices based on such resonant modes.


Sign in / Sign up

Export Citation Format

Share Document