scholarly journals Role of hot electron scattering in epsilon-near-zero optical nonlinearity

Nanophotonics ◽  
2020 ◽  
Vol 9 (14) ◽  
pp. 4287-4293
Author(s):  
Heng Wang ◽  
Kang Du ◽  
Ruibin Liu ◽  
Xinhai Dai ◽  
Wending Zhang ◽  
...  

AbstractThe physical origin of epsilon-near-zero (ENZ) optical nonlinearity lies in the hot-electron dynamics, in which electron scattering plays an important role. With the damping factor defined by hot electron scattering time, the Drude model could be extended to modeling ENZ optical nonlinearity completely. We proposed a statistical electron scattering model that takes into account the effect of electron distribution in a nonparabolic band and conducted the investigation on indium tin oxide (ITO) with femtosecond-pump continuum-probe experiment. We found that ionized impurity scattering and acoustic phonon scattering are the two major scattering mechanisms, of which the latter had been neglected before. They dominate at low-energy and high-energy electrons, respectively, and are weakened or boosted for high electron temperature, respectively. The electron energy–dependent scattering time contributed from multiple scattering mechanisms shows the electron density–dependent damping factor. The comprehensive understanding of electron scattering in ITO will help to develop a complete model of ENZ optical nonlinearity.

2020 ◽  
Author(s):  
Justus Bohn ◽  
Ting-Shan Luk ◽  
Craig Tollerton ◽  
Sam Hutchins ◽  
Igal Brener ◽  
...  

Abstract Nonlinear optical devices and their implementation into modern nanophotonic architectures are constrained by their usually moderate nonlinear response. Recently, epsilon-near-zero (ENZ) materials have been found to have a strong optical nonlinearity, which can be enhanced through the use of cavities or nano-structuring. Here, we study the pump dependent properties of the plasmon resonance in the ENZ region in a thin layer of thin indium tin oxide (ITO). Exciting this mode using the Kretschmann-Raether configuration, we study reflection switching properties of a 60nm layer close to the resonant plasmon frequency. We demonstrate the thermal switching mechanism, which results in a shift in the plasmon resonance frequency of 20THz for a TM pump intensity of 75GW/cm2. For degenerate pump and probe frequencies, we highlight an additional coherent contribution, not previously isolated in ENZ nonlinear optics studies, which leads to an overall pump induced change in reflection from 1% to 45%.


Science ◽  
2016 ◽  
Vol 352 (6287) ◽  
pp. 795-797 ◽  
Author(s):  
M. Z. Alam ◽  
I. De Leon ◽  
R. W. Boyd

1992 ◽  
Vol 7 (3B) ◽  
pp. B248-B250 ◽  
Author(s):  
K Makiyama ◽  
K Kasai ◽  
T Ohori ◽  
J Komeno

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Justus Bohn ◽  
Ting Shan Luk ◽  
Craig Tollerton ◽  
Sam W. Hutchings ◽  
Igal Brener ◽  
...  

AbstractNonlinear optical devices and their implementation into modern nanophotonic architectures are constrained by their usually moderate nonlinear response. Recently, epsilon-near-zero (ENZ) materials have been found to have a strong optical nonlinearity, which can be enhanced through the use of cavities or nano-structuring. Here, we study the pump dependent properties of the plasmon resonance in the ENZ region in a thin layer of indium tin oxide (ITO). Exciting this mode using the Kretschmann-Raether configuration, we study reflection switching properties of a 60 nm layer close to the resonant plasmon frequency. We demonstrate a thermal switching mechanism, which results in a shift in the plasmon resonance frequency of 20 THz for a TM pump intensity of 70 GW cm−2. For degenerate pump and probe frequencies, we highlight an additional two-beam coupling contribution, not previously isolated in ENZ nonlinear optics studies, which leads to an overall pump induced change in reflection from 1% to 45%.


2013 ◽  
Vol 114 (18) ◽  
pp. 183713 ◽  
Author(s):  
G. Rey ◽  
C. Ternon ◽  
M. Modreanu ◽  
X. Mescot ◽  
V. Consonni ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1558 ◽  
Author(s):  
George Mogildea ◽  
Marian Mogildea ◽  
Cristina Popa ◽  
Gabriel Chiritoi

This paper focuses on the dissociation of carbon dioxide (CO2) following the absorption processes of microwave radiation by noncontact metal wire (tungsten). Using a microwave plasma generator (MPG) with a single-mode cavity, we conducted an interaction of microwaves with a noncontact electrode in a CO2 atmosphere. High energy levels of electromagnetic radiation are generated in the focal point of the MPG’s cylindrical cavity. The metal wires are vaporized and ionized from this area, subsequently affecting the dissociation of CO2. The CO2 dissociation is highlighted through plasma characterization and carbon monoxide (CO) quantity determination. For plasma characterization, we used an optical emission spectroscopy method (OES), and for CO quantity determination, we used a gas analyzer instrument. Using an MPG in the CO2 atmosphere, we obtained a high electron temperature of the plasma and a strong dissociation of CO2. After 20 s of the interaction between microwaves and noncontact electrodes, the quantity of CO increased from 3 ppm to 1377 ppm (0.13% CO). This method can be used in space applications to dissociate CO2 and refresh the atmosphere of closed spaces.


Sign in / Sign up

Export Citation Format

Share Document