scholarly journals Three-dimensional plasmonic nano-router via optical antennas

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yi Xu ◽  
Baowei Gao ◽  
Axin He ◽  
Tongzhou Zhang ◽  
Jiasen Zhang

Abstract A three-dimensional (3D) nanoscale optical router is a much-desired component in 3D stacked optical integrated circuits. However, existing 3D routers based on dielectric configurations suffer from large footprints and nanoscale routers based on plasmonic antennas only work in a 2D in-plane scene. Here, we propose and experimentally demonstrate cross-layered all-optical 3D routers with nanoscale footprints. Optical slot antenna pairs are used to realize the routing of plasmonic signals between different layers for arbitrary direction in a broadband wavelength range. The routers are also integrated with waveguide directly for exploring further applications. Based on these router elements, a 3D network of optical butterfly interconnection is demonstrated for multi-directional all-optical data communication. The proposed configuration paves the way for optical cross-layer routing on the nanoscale and advances the research and applications for 3D plasmonic circuits with high integration density in the future.

Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 461 ◽  
Author(s):  
Mohammad Reza Jalali Azizpour ◽  
Mohammad Soroosh ◽  
Narges Dalvand ◽  
Yousef Seifi-Kavian

In this paper, an all-optical photonic crystal-based switch containing a graphene resonant ring has been presented. The structure has been composed of 15 × 15 silicon rods for a fundamental lattice. Then, a resonant ring including 9 thick silicon rods and 24 graphene-SiO2 rods was placed between two waveguides. The thick rods with a radius of 0.41a in the form of a 3 × 3 lattice were placed at the center of the ring. Graphene-SiO2 rods with a radius of 0.2a were assumed around the thick rods. These rods were made of the graphene monolayers which were separated by SiO2 disks. The size of the structure was about 70 µm2 that was more compact than other works. Furthermore, the rise and fall times were obtained by 0.3 ps and 0.4 ps, respectively, which were less than other reports. Besides, the amount of the contrast ratio (the difference between the margin values for logics 1 and 0) for the proposed structure was calculated by about 82%. The correct switching operation, compactness, and ultra-fast response, as well as the high contrast ratio, make the presented switch for optical integrated circuits.


2006 ◽  
Vol 05 (06) ◽  
pp. 743-746
Author(s):  
SHOUZHEN HAN ◽  
JIE TIAN ◽  
CHENG REN ◽  
XINGSHENG XU ◽  
ZHIYUAN LE ◽  
...  

The abstract should summarize the context, content and conclusions of the paper in less than 200 words. We fabricated a two-dimensional Y-branch photonic crystal waveguide in the near infrared region by using focused ion beam etching and depositing system. The light guide characters of the waveguide were measured for three different spaces between branches. Field intensity distributions of TE polarized wave in the branches were simulated by using the transfer matrix method. Both the theoretical and experimental results show that the shortest space between branches of the photonic crystal waveguide is about 1.4 times wavelength of transmitted light. If the space became shorter, the light in the two branches would couple to each other seriously. This result might be helpful for the design of compact wave demultiplexer and all-optical integrated circuits.


2021 ◽  
Author(s):  
Sunghyun Moon ◽  
Yeojun Yun ◽  
Minhyung Lee ◽  
Donghwan Kim ◽  
Wonjin Choi ◽  
...  

Abstract Thin-film vertical cavity surface emitting lasers (VCSELs) mounted onto heatsinks open up the way toward low-power consumption and high-power operation, enabling them to be widely used for energy saving high-speed optical data communication and three-dimensional sensor applications. There are two conventional VCSEL polarity structures: p-on-n and n-on-p polarity. The former is more preferably used owing to the reduced series resistance of n-type bottom distributed Bragg reflection (DBR) as well as the lower defect densities of n-type GaAs substrates. In this study, the p-on-n structures of thin-film VCSELs, including an etch stop layer and a highly n-doped GaAs ohmic layer, were epitaxially grown in upright order by using low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The p-on-n structures of thin-film VCSELs were transferred onto an aluminum heatsink via a double-transfer technique, allowing the top-emitting thin-film VCSELs to keep the p-on-n polarity with the removal of the GaAs substrate. The threshold current (Ith) and voltage (Vth) of the fabricated top-emitting thin-film VCSELs were 1 mA and 2.8 V, respectively. The optical power was 7.7 mW at a rollover point of 16.1 mA.


1968 ◽  
Vol 27 (3_suppl) ◽  
pp. 1115-1122 ◽  
Author(s):  
Roy B. Mefferd

Two-dimensional objects misperceived to be three-dimensional, have a smaller “near” face and its elements are sharper and narrower than those of the “far” face. In addition, the object acquires a number of attributes of “real” depth—the “near” face is brighter, more sharply delineated, and clearly is interposed before the “far” face. If the stimulus is rotating, even differential blur due to apparent differences in velocities of “near” and “far” parts is evident as O fixates one or the other face. The first effect, the size constancy scaling mechanism, has been treated elsewhere. Here, an hypothesis is presented that the depth effects result from the operation of another steady-state physiological mechanism that also serves to stabilize visual percepts, the apparent depth mechanism. A third such mechanism becomes evident as a real cube is “seen” in reversed perspective, one involving the perception of depth per se. In contrast to a flat “cube” all evidence of apparent depth disappears in the percept of the “reversed” real cube, yet Os still perceive depth. The integration of these three mechanisms into the over-all optical data processing system is discussed.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 417-426
Author(s):  
K. Rama Prabha ◽  
R. Arunkumar ◽  
S. Robinson

AbstractIn this paper the design and analysis of two dimensional photonic crystals based all optical AND logic gate is investigated. A logic gate implements a Boolean function and thus performs a logical operation on one or several logic inputs in order to produce a single logic input. The proposed all optical AND gate is designed with line and point defect using a hexagonal lattice with “Y” shaped defect. In order to meet the requirements for high speed networks the proposed gate designed. The functional parameters such as contrast ratio, bit rate, normalized efficiency and response time are calculated. The performance of the AND gate is analyzed by using the Finite Difference Time Domain method. The proposed logic gate is designed to operate at 1550 nm. It provides high contrast ratio and minimum delay time. Hence it is suitable for optical sensors and optical integrated circuits.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sunghyun Moon ◽  
Yeojun Yun ◽  
Minhyung Lee ◽  
Donghwan Kim ◽  
Wonjin Choi ◽  
...  

AbstractThin-film vertical cavity surface emitting lasers (VCSELs) mounted onto heatsinks open up the way toward low-power consumption and high-power operation, enabling them to be widely used for energy saving high-speed optical data communication and three-dimensional sensor applications. There are two conventional VCSEL polarity structures: p-on-n and n-on-p polarity. The former is more preferably used owing to the reduced series resistance of n-type bottom distributed Bragg reflection (DBR) as well as the lower defect densities of n-type GaAs substrates. In this study, the p-on-n structures of thin-film VCSELs, including an etch stop layer and a highly n-doped GaAs ohmic layer, were epitaxially grown in upright order by using low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The p-on-n structures of thin-film VCSELs were transferred onto an aluminum heatsink via a double-transfer technique, allowing the top-emitting thin-film VCSELs to keep the p-on-n polarity with the removal of the GaAs substrate. The threshold current (Ith) and voltage (Vth) of the fabricated top-emitting thin-film VCSELs were 1 mA and 2.8 V, respectively. The optical power was 7.7 mW at a rollover point of 16.1 mA.


Sign in / Sign up

Export Citation Format

Share Document