Investigation on two dimensional photonic crystal based two/three input all optical AND gate

Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 417-426
Author(s):  
K. Rama Prabha ◽  
R. Arunkumar ◽  
S. Robinson

AbstractIn this paper the design and analysis of two dimensional photonic crystals based all optical AND logic gate is investigated. A logic gate implements a Boolean function and thus performs a logical operation on one or several logic inputs in order to produce a single logic input. The proposed all optical AND gate is designed with line and point defect using a hexagonal lattice with “Y” shaped defect. In order to meet the requirements for high speed networks the proposed gate designed. The functional parameters such as contrast ratio, bit rate, normalized efficiency and response time are calculated. The performance of the AND gate is analyzed by using the Finite Difference Time Domain method. The proposed logic gate is designed to operate at 1550 nm. It provides high contrast ratio and minimum delay time. Hence it is suitable for optical sensors and optical integrated circuits.

Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 392
Author(s):  
Ahmad Mohebzadeh-Bahabady ◽  
Saeed Olyaee

A compact and simple structure is designed to create an all-optical XOR logic gate using a two-dimensional, photonic crystal lattice. The structure was implemented using three waveguides connected by two nano-resonators. The plane wave expansion method was used to obtain the photonic band gap and the finite-difference time-domain method was used to investigate the behavior of the electromagnetic field in the photonic crystal structure. Examining the high contrast ratio and high-speed cascade, all-optical XOR on a chip, the effects of fabrication error and the changes in the input optical power showed that the structure could be used in optical integrated circuits. The contrast ratio and data transfer rate of the cascade XOR logic gate were respectively obtained as 44.29 dB and 1.5 Tb/s. In addition, the designed structure had very small dimensions at 158.65 μm2 and required very low power to operate, which made it suitable for low-power circuits. This structure could also be used as a NOT logic gate. Therefore, an XNOR logic gate can be designed using XOR and NOT logic gates.


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 461 ◽  
Author(s):  
Mohammad Reza Jalali Azizpour ◽  
Mohammad Soroosh ◽  
Narges Dalvand ◽  
Yousef Seifi-Kavian

In this paper, an all-optical photonic crystal-based switch containing a graphene resonant ring has been presented. The structure has been composed of 15 × 15 silicon rods for a fundamental lattice. Then, a resonant ring including 9 thick silicon rods and 24 graphene-SiO2 rods was placed between two waveguides. The thick rods with a radius of 0.41a in the form of a 3 × 3 lattice were placed at the center of the ring. Graphene-SiO2 rods with a radius of 0.2a were assumed around the thick rods. These rods were made of the graphene monolayers which were separated by SiO2 disks. The size of the structure was about 70 µm2 that was more compact than other works. Furthermore, the rise and fall times were obtained by 0.3 ps and 0.4 ps, respectively, which were less than other reports. Besides, the amount of the contrast ratio (the difference between the margin values for logics 1 and 0) for the proposed structure was calculated by about 82%. The correct switching operation, compactness, and ultra-fast response, as well as the high contrast ratio, make the presented switch for optical integrated circuits.


2020 ◽  
Vol 18 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Elhachemi Kouddad ◽  
Rafah Naoum

In this paper, the use of the Kerr effect in a two-dimensional square lattice of In0.82Ga0.18As0.40P0.60 rods in photonic crystal proposes an ultra-compact all-optical NOT logic gate. The main device operation is based on the concept of all the optical switches. In our work, the novelty lies in the design of a new simple nonlinear ring based on the combination of silicon nano-crystal "Si–Nc/In0.82Ga0.18As0.40P0.60" materials that can be used. The contrast ratio and delay time for the proposed NOT logic gate are respectively 25.52 dB and 0.66 ps. The structure size is equal to 168 μm2. Designed logic gates are characterized by low energy consumption, high-speed response, compactness and easy integration. All simulations are based on Non-Linear-Finite Difference Time Domain (NL-FDTD) and Plane Wave Expansion (PWE) numerical methods.


2021 ◽  
Author(s):  
Ajay Kumar ◽  
Manish Kumar ◽  
Sumit Kumar Jindal ◽  
Sanjeev Kumar Raghuwanshi ◽  
Rakesh Choudhary

Abstract Implementation of switching activity in the all-optical domain is one of the most important aspects in the field of modern high-speed and secured communication technology. Micro-ring Resonator (MRR) based switching activity can be used to implement all-optical active low tri-state buffer logic and clocked D flip-flop. The paper describes the switching activity of micro-ring resonator structures and the switching activity is further used to implement the effective all-optical 4 - bit memory register using the appropriate arrangement of all-optical tri-state buffers and clocked D flip-flops with the functionality of RD and WR. The complete description of layouts and switching mechanisms of all-optical 4-bit memory registers have been explained and appropriate MATLAB simulation results are presented to observe the suitability of the proposed unit. The analysis shows that implementation of tri-state buffer logic and D flip-flop assisted 4-bit memory register in the all-optical domain includes the considerable advantages of optical communication e.g. immunity to electromagnetic interference, parallel computing, compactness, signal security, etc. The manuscript describes the detailed analysis of performance parameters e. g. extinction ratio, contrast ratio, amplitude modulation, on-off ratio, and switching speed of micro-ring resonator structures to achieve an efficient selection of device parameters and finally describes an efficient technique to implement all-optical MRR based 1 x 4 memory registers.


2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction of an all-optical OR, NOR, NAND gates based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB for NAND gate, 2 dB and 20.35 dB for NOR gate and 6 dB and 24.10 dB respectively. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


Author(s):  
Shuai Zhao ◽  
Hongyu Hu

The scheme to realize high speed (~250Gb/s) all-optical Boolean logic gates using semiconductor optica amplifiers with quantum-dot (QD-SOA) is introduced and analyzed in this review. Numerical simulation method was presented by solving the rate equation and taking into account nonlinear dynamics including carrier heating and spectral hole-burning. Binary phase shift keyed (BPSK) signal and on-off keyed signal are used to generate high speed all-optical logic gates. The applications based on all-optical logic gates such as, all-optical latches, pseudo random bit sequence (PRBS) generation and all-optical encryption, are also discussed in this review. Results show that the scheme based on QD-SOA is a promising method for the realization of high speed all-optical communication system in the future.


Sign in / Sign up

Export Citation Format

Share Document