Study on Sakiadis and Blasius flows of Williamson fluid with convective boundary condition

2015 ◽  
Vol 4 (4) ◽  
Author(s):  
G.K. Ramesh ◽  
B.J. Gireesha ◽  
Rama Subba Reddy Gorla

AbstractThe present analysis reports the behaviour of Sakiadis and Blasius flow of Williamson fluid with convective boundary condition. Using boundary layer approximations and suitable similarity transformations the governing partial differential equations along with the boundary conditions are reduced into a set of nonlinear ordinary differential equations. The transformed equations are solved numerically with the help of fourth and fifth order Runge-Kutta-Fehlberg method. It is found that the Blasius flow provides a thicker thermal boundary layerwhen compared with the Sakiadis flow.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


2019 ◽  
Vol 33 (35) ◽  
pp. 1950448
Author(s):  
K. Ganesh Kumar ◽  
M. N. Khan ◽  
M. Osman ◽  
Abdulaziz R. Alharbi ◽  
Mohammad Rahimi-Gorji ◽  
...  

This work focused on slip flow over a non-Newtonian nanofluid fluid flow past a stretching sheet with particles–liquid suspension. The convective boundary condition is taken into account. Similarity transformations are utilized to reduce the nonlinear partial differential equations into a set of nonlinear ordinary differential equations. Runge–Kutta–Fehlberg scheme is used to get the numerical solution. Important parameters are analyzed through graphs and skin friction coefficient. Nusselt numbers are presented in tables. Investigation reveals that slip parameter decreases the velocity field and Biot number increases the temperature field.


Author(s):  
RamReddy Chetteti ◽  
Venkata Rao Chukka

AbstractIn this article, we investigate the effects of Arrhenius activation energy with binary chemical reaction and convective boundary condition on natural convective flow over vertical frustum of a cone in a Buongiorno nanofluid under the presence of thermal radiation. The zero nanoparticle flux condition is used at the surface of frustum of a cone rather than the uniform wall condition to execute physically applicable results. For this complex flow model, a suitable non-similarity transformations are used initially and then Bivariate pseudo-spectral local linearisation method is used to solve the non-similar, coupled partial differential equations. Further, the convergence test and error analysis are conducted to verify the accuracy of numerical method. The effects of flow influenced parameters on the non-dimensional velocity, temperature, nanoparticle volume fraction and regular concentration profiles as well as on the skin friction, heat transfer rate, nanoparticle and regular mass transfer rates are analyzed.


2019 ◽  
Vol 24 (3) ◽  
pp. 577-590
Author(s):  
A.D.M. Gururaj ◽  
S. Dhanasekar ◽  
V. Parthiban

Abstract MHD slip flow past an extending surface with third type (convective) boundary condition and thermal radiation is analysed. The governing momentum and energy equations are converted into set of nonlinear ordinary differential equations using appropriate similarity transformations. The Fourth-Order Runge-Kutta shooting method is applied for obtaining the numerical solution of the resulting nonlinear ordinary differential equations. The numerical results for velocity and temperature distribution are found for different values of the vital parameters, namely: the magnetic interaction factor, slip factor, convective factor, Prandtl number and radiation factor and are presented graphically, and discussed.


2020 ◽  
Vol 401 ◽  
pp. 63-78
Author(s):  
Sheniyappan Eswaramoorthi ◽  
Marimuthu Bhuvaneswari ◽  
S. Sivasankaran ◽  
Oluwole Daniel Makinde

The purpose of this paper is to investigate the Soret and Dufour effects on unsteady mixed convective boundary layer flow of a viscous fluid over a stretching surface in a porous medium in the presence of magnetic field with heat generation/absorption, chemical reaction, suction/injection and convective boundary condition. The governing time-dependent partial differential equations are transformed into non-linear ordinarydifferential equations using similarity transformations. These equations subject to the appropriate boundary conditions are solved analytically by homotopy analysis method (HAM) and numerically by Runge-Kutta fourth order method and shooting technique.The numerical solution is compared with analytical solution. The influence of the different parameters on velocity, temperature and concentration profiles are discussed in graphical as well as in tabular form. It is observed that the fluid velocity and temperature increase on increasing the buoyancy ratio parameter and heat generation/absorption parameter. Also found that the surface heat and mass transfer rates increase on increasingthe suction/injection and heat generation/absorption parameters.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Ch. RamReddy ◽  
P. Naveen ◽  
D. Srinivasacharya

AbstractThe objective of the present study is to investigate the effect of nonlinear variation of density with temperature and concentration on the mixed convective flow of a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of the convective boundary condition. In order to analyze all the essential features, the governing non-dimensional partial differential equations are transformed into a system of ordinary differential equations using a local non-similarity procedure and then the resulting boundary value problem is solved using a successive linearisation method (SLM). By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the micropolar parameter and non-Darcy parameter tend to increase the skin friction and the reverse change is observed in wall couple stress, mass and heat transfer rates. The influence of the nonlinear concentration parameter is more prominent on all the physical characteristics of the present model, compared with that of nonlinear temperature parameter.


2016 ◽  
Vol 46 (4) ◽  
pp. 85-95 ◽  
Author(s):  
Mona D. Aljoufi ◽  
Abdelhalim Ebaid

Abstract The exact solutions of a nonlinear differential equations system, describing the boundary layer flow over a stretching sheet with a convective boundary condition and a slip effect have been obtained in this paper. This problem has been numerically solved by using the shooting method in literature. The aim of the current paper is to check the accuracy of these published numerical results. This goal has been achieved via first obtaining the exact solutions of the governing nonlinear differential equations and then, by comparing them with the approximate numerical results reported in literature. The effects of the physical parameters on the flow field and the temperature distribution have been re-investigated through the new exact solutions. The main advantage of the current paper is the simple computational approach that has been introduced to analyze exactly the present physical problem. This simple analytical approach can be further applied to investigate similar problems. Although no remarkable differences have been detected between the current figures and those obtained in literature, the authors believe that if some numerical calculations were available for the fluid velocity and the temperature in literature then the convergence criteria and the accuracy of the shooting method used in Ref. [15] can be validated in view of the current exact expressions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sanatan Das ◽  
Akram Ali ◽  
Rabindra Nath Jana

Purpose Outstanding features such as thermal conductivity and superior electrical conductivity of nanofluids unfold a new window in the context of their extensive applications in engineering and industrial domains. The purpose of this study to simulate numerically the magneto-nanofluid flow and heat transfer over a curved stretching surface. Heat transport is explored in the presence of viscous dissipation. At the curved surface, the convective boundary condition is adopted. Three different nanoparticles, namely, copper, aluminium oxide and titanium dioxide are taken into consideration because of easily available in nature. Design/methodology/approach The basic flow equations are framed in terms of curvilinear coordinates. The modelled partial differential equations are transformed into a system of non-linear ordinary differential equations by means of appropriate similarity transformation. The subsequent non-linear system of equations is then solved numerically by using the Runge–Kutta–Felhberg method with the shooting scheme via bvp4c MATLAB built-in function. Impacts of various physical parameters on velocity, pressure and temperature distributions, local skin-friction coefficient, local Nusselt number and wall temperature are portrayed through graphs and tables followed by a comprehensive debate and physical interpretation. Findings Graphical results divulge that augmenting values of the magnetic parameter cause a decline in velocity profiles and stream function inside the boundary layer. The magnitude of the pressure function inside the boundary layer reduces for higher estimation of curvature parameter, and it is also zero when the curvature parameter goes to infinity. Furthermore, the temperature is observed in a rising trend with growing values of the magnetic parameter and Biot number. Practical implications This research study is very pertinent to the expulsion of polymer sheet and photographic films, metallurgical industry, electrically-conducting polymer dynamics, magnetic material processing, rubber and polymer sheet processing, continuous casting of metals, fibre spinning, glass blowing and fibre, wire and fibre covering and sustenance stuff preparing, etc. Originality/value Despite the huge amount of literature available, but still, very little attention is given to simulate the flow configuration due to the curved stretching surface with the convective boundary condition. Very few papers have been examined on this topic and found that its essence inside the boundary layer is not any more insignificant than on account of a stretching sheet. A numerical comparison with the published works is conducted to verify the accuracy of the present study.


Author(s):  
Chetteti RamReddy ◽  
Teegala Pradeepa

AbstractThis article emphasizes the influence of convective boundary condition on mixed convection flow of a micropolar fluid over a truncated cone with Soret and viscous dissipation effects. The governing micropolar fluid flow equations are non-dimensionalized using suitable non-similarity transformations. Several authors have applied the spectral quasilinearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a newly developed method called the spectral quasilinearization method (SQLM). The comparison of convection process namely free, forced and mixed convection on the micropolar fluid is provided in detail. The convergence and error analysis are also discussed to test the accuracy of the spectral method. From the results, it perceived that with the rise in viscous dissipation parameter, the wall couple stress coefficient and Nusselt number reduce, but velocity, temperature, concentration, skin friction coefficient and Sherwood number increase for both in the absence and in the presence of Soret number.


2017 ◽  
Vol 377 ◽  
pp. 233-241 ◽  
Author(s):  
S.U. Mamatha ◽  
Mahesha ◽  
Chakravarthula S.K. Raju ◽  
Oluwole Daniel Makinde

The underlying intention of the present study is to analyze the steady incompressible magneto hydrodynamic Carreau Dusty fluid over a stretching sheet with exponentially decaying heat source. Convective conditions are considered to control the thermal boundary layer. Similarity transformations were used to convert partial differential equations (PDEs) to a system of nonlinear ordinary differential equations (NODEs) which are solved numerically by employing Runge-Kutta with Newton’s technique. The effect of pertinent parameters on velocity and temperature profiles of both fluid and dust phase within the boundary layer has been studied by considering various values of controlling parameters. In addition, skin friction coefficient and reduced heat transfer coefficient have been examined for various values of the governing parameters. It is observed that the rate of heat transfer depreciates with space dependent heat generation and enhanced with the existing convective condition.


Sign in / Sign up

Export Citation Format

Share Document