scholarly journals MHD Slip Flow Past an Extending Surface with Third Type Boundary Condition and Thermal Radiation Effects

2019 ◽  
Vol 24 (3) ◽  
pp. 577-590
Author(s):  
A.D.M. Gururaj ◽  
S. Dhanasekar ◽  
V. Parthiban

Abstract MHD slip flow past an extending surface with third type (convective) boundary condition and thermal radiation is analysed. The governing momentum and energy equations are converted into set of nonlinear ordinary differential equations using appropriate similarity transformations. The Fourth-Order Runge-Kutta shooting method is applied for obtaining the numerical solution of the resulting nonlinear ordinary differential equations. The numerical results for velocity and temperature distribution are found for different values of the vital parameters, namely: the magnetic interaction factor, slip factor, convective factor, Prandtl number and radiation factor and are presented graphically, and discussed.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


2020 ◽  
Vol 18 (1) ◽  
pp. 85-93
Author(s):  
Mahantesh M. Nandeppanavar ◽  
Kemparaju M.C. ◽  
N. Raveendra

Purpose This paper aims to report the investigation of over heat and mass transfer of convective Casson fluid flow over a moving vertical plate with nonlinear thermal radiation and convective boundary conditions. Design/methodology/approach The main partial differential equations of the flow, heat and concentration profiles were rehabilitated to nonlinear ordinary differential equations by using an appropriate similarity transformation. The resultant nonlinear ordinary differential equations (ODEs) are solved numerically applying fourth-order Runge–Kutta shooting technique and functions of ODE45 from MATLAB. Findings The effect of convective heat transfer, buoyancy ratio parameter, nonlinear thermal radiation, Prandtl number, Rayleigh number and Schmidt number over velocity, temperature and concentration profiles, equivalent to abundant somatic parameters were graphically scrutinized. Originality/value All the results are very promising and further there is got good agreement of results when compared with earlier published results at limiting conditions.


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
K. Ganesh Kumar ◽  
N.G. Rudraswamy ◽  
B.J. Gireesha ◽  
M.R. Krishnamurthy

AbstractPresent exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge–Kutta–Fehlberg fourth–fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.


2020 ◽  
Vol 18 (2) ◽  
pp. 113-121
Author(s):  
A. El Harfouf ◽  
A. Wakif ◽  
S. Hayani Mounir

In this current work, the heat transfer analysis for the unsteady squeezing magnetohydrodynamic flow of a viscous nanofluid between two parallel plates in the presence of thermal radiation, viscous and magnetic dissipations impacts, considering Fourier heat flux model have been explored. The partial differential equations representing flow model are reduced to nonlinear ordinary differential equations by introducing a similarity transformation. The dimensionless and nonlinear ordinary differential equations of the velocity and temperatures functions obtained are solved by employing the homotopy perturbation method. The effects of different parameters on the velocity and temperature profiles are examined graphically, and numerical calculations for the skin friction coefficient and local Nusselt number are tabulated. It is found an excellent agreement in the comparative study with literature results. This present numerical exploration has great relevance, consequently a better understanding of the squeezing flow phenomena in the hydraulic lifts, power transmission, nano gastric tubes, reactor fluidization areas.


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
G.K. Ramesh ◽  
B.J. Gireesha ◽  
Rama Subba Reddy Gorla

AbstractThe present analysis reports the behaviour of Sakiadis and Blasius flow of Williamson fluid with convective boundary condition. Using boundary layer approximations and suitable similarity transformations the governing partial differential equations along with the boundary conditions are reduced into a set of nonlinear ordinary differential equations. The transformed equations are solved numerically with the help of fourth and fifth order Runge-Kutta-Fehlberg method. It is found that the Blasius flow provides a thicker thermal boundary layerwhen compared with the Sakiadis flow.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 417
Author(s):  
K. Jagan ◽  
S. Sivasankaran ◽  
M. Bhuvaneswari ◽  
S. Rajan

The objective of this paper is to analyze the effect of thermal radiation on MHD mixed convection flow of a micropolar nanoliquid   towards a non-linear stretching surface with convective boundary condition. The governing equations are converted into non-linear    ordinary differential equations by using suitable similarity transformations. The homotopy analysis method is used for solving the non-linear ordinary differential equations. The temperature profiles increase due to increase in thermal radiation parameter. The microrotation   profile increases when boundary parameter is increased. Also, the skin friction coefficient and local Nusselt are plotted for various    parameters.  


2019 ◽  
Vol 8 (4) ◽  
pp. 10239-10245

This work is focused on the numerical study of thermodiffusion, inclination of the plate, order of chemical reaction, Diffusion-thermo and thermal radiation effects on a steady magnetohydrodynamic convective flow over an inclined plate in a porous medium under the influence of viscous dissipation along with the application of heat generation/ absorption effects. The partial differential equations governing the fluid flow are transformed into coupled non dimensional ordinary differential equations with the help of similarity transformations. Suitable codes in MATLAB’s built in solver bvp4c, which is a highly accurate and efficient solver of MATLAB, are developed to solve these coupled ordinary differential equations numerically. The behaviour of the fluid velocity, temperature and species concentration for variations in the various thermo-physical parameters are illustrated via graphs. From the numerical results it is evident that the heat and mass transfer of the fluid are significantly influenced by the order of chemical reaction, thermal radiation, inclination of the plate, Soret and Dufour effects. Results obtained in this paper may be useful in the field of chemical industries, chemical engineering, petroleum engineering. Gas separating instruments can be installed in big cities as an engineering application so that harmful pollutants can be removed which are present in small quantities mixed with air.


2018 ◽  
Vol 387 ◽  
pp. 587-599 ◽  
Author(s):  
R. Jayakar ◽  
B. Rushi Kumar ◽  
Oluwole Daniel Makinde

The investigation is undertaken to study the thermal diffusion and radiation effects on unsteady MHD heat and mass transfer flow past a semi-infinite inclined porous plate embedded in a porous medium in a slip flow regime with variable suction in the presence of first order chemically reaction. The analytical solutions for velocity, temperature and concentration fields are obtained by reducing the governing nonlinear coupled partial differential equations in dimensionless form into a system of ordinary differential equations, using perturbation method. The effect of pertinent flow parameters on velocity, temperature, concentration, the skin friction, the rate of heat transfer and the rate of mass transfer are studied graphically.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 147-152 ◽  
Author(s):  
Yasir Khan ◽  
Qingbiao Wu ◽  
Naeem Faraz ◽  
Ahmet Yıldırım ◽  
Syed Tauseef Mohyud-Din

In this paper, a two-dimensional, steady magnetohydrodynamic flow and heat transfer analysis of a non-Newtonian fluid in a channel with a constant wall temperature are considered in the presence of thermal radiation. The steady Navier-Stokes equations are reduced to nonlinear ordinary differential equations by using similarity variables. The homotopy perturbation method is used to solve the nonlinear ordinary differential equations. The effects of the pertinent parameters on the velocity and temperature field are discussed


2011 ◽  
Vol 16 (1) ◽  
pp. 17-29 ◽  
Author(s):  
S. P. Anjali Devi ◽  
R. Uma Devi

The effect of thermal radiation on the steady laminar convective hydromagnetic flow of a viscous and electrically conducting fluid due to a rotating disk of infinite extend is studied. The fluid is subjected to an external uniform magnetic field perpendicular to the plane of the disk. The governing Navier–Stokes and Maxwell equations of the hydromagnetic fluid, together with the energy equation, are transformed into nonlinear ordinary differential equations by using the von Karman similarity transformations. The resulting nonlinear ordinary differential equations are then solved numerically subject to the transformed boundary conditions by Runge–Kutta based shooting method. Comparisons with previously published works are performed and the results are found to be in excellent agreement. Numerical and graphical results for the velocity and temperature profiles as well as the skin friction and Nusselt number are presented and discussed for various parametric conditions.


Sign in / Sign up

Export Citation Format

Share Document