scholarly journals Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers

2021 ◽  
Vol 10 (1) ◽  
pp. 62-72
Author(s):  
Huanran Lin ◽  
Xiuhua Guo ◽  
Kexing Song ◽  
Jiang Feng ◽  
Shaolin Li ◽  
...  

Abstract Although Cu–Al2O3 composites have good comprehensive performance, higher mechanical properties and arc erosion resistance are still required to meet heavy-duty applications such as electromagnetic railguns. In this work, a novel hybrid SiCw/Cu–Al2O3 composite was successfully prepared by combining powder metallurgy and internal oxidation. The microstructure and mechanical behavior of the SiCw/Cu–Al2O3 composite were studied. The results show that nano-Al2O3 particles and micro-SiCw are introduced into the copper matrix simultaneously. Well-bonded interfaces between copper matrix and Al2O3 particles or SiCw are obtained with improved mechanical and arc erosion resistance of SiCw/Cu–Al2O3 composite. The ultimate tensile strength of the SiCw/Cu–Al2O3 composite is 508.9 MPa, which is 7.9 and 56.1% higher than that of the Cu–Al2O3 composite and SiCw/Cu composite, respectively. The strengthening mechanism calculation shows that Orowan strengthening is the main strengthening mechanism of the SiCw/Cu–Al2O3 composite. Compared with Cu–Al2O3 composite, the hybrid SiCw/Cu–Al2O3 composite has lower arc time and energy and better arc stability.

2021 ◽  
Vol 11 ◽  
pp. 1469-1479 ◽  
Author(s):  
Xiuhua Guo ◽  
Yubo Yang ◽  
Kexing Song ◽  
Li Shaolin ◽  
Feng Jiang ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 619-627 ◽  
Author(s):  
Shaolin Li ◽  
Xiuhua Guo ◽  
Shengli Zhang ◽  
Jiang Feng ◽  
Kexing Song ◽  
...  

AbstractArc erosion behaviors of TiB2/Cu composites with single-scale and dual-scale TiB2 particles fabricated by powder metallurgy were studied. It was revealed that the dual-scale TiB2/Cu composites had fewer structure defects compared with the single-scale TiB2/Cu composites, and TiB2 particles with different size were uniformly distributed in the copper matrix. When the ratio of 2 μm over 50 μm TiB2 particles is 1:2, the density of TiB2/Cu composite is 98.5% and shows best mechanical and thermal properties. The arc duration and energy of TiB2/Cu composites increase with the increase of electric current in contact material testing. Compared with the single-scale TiB2/Cu composites, the arc erosion of dual-scale TiB2/Cu composite with 2 μm+50 μm (1:2) TiB2 was slighter. The anode bulge area and cathode erosion pit of dual-scale TiB2/Cu composite was smaller. The dual-scale TiB2 particles optimize the microstructure and thermal stability of the composite, which is conducive to alleviating arc erosion. The synergistic effect of different sized TiB2 particles in the matrix improved the arc erosion resistance of TiB2/Cu composite during arcing.


2021 ◽  
Vol 1035 ◽  
pp. 925-930
Author(s):  
Ya Zhou Li ◽  
Yu Zhao ◽  
Xu Ran

To reduce the agglomeration of graphene and enhance the interface bonding between reduced graphene oxide (RGO) and copper substrate, copper plating on the graphene surface was prepared by the in-situ reduction method. To improve the strength of the copper matrix, the microalloying strategy of adding titanium to the matrix was adopted. By changing the mass fraction of titanium in the matrix, the optimum ratio of RGO was obtained( Ti mass fraction was 5:1), and the tensile strength was maximized. The results show that RGO did not agglomerate obviously in the matrix. At the same time, the composite powder could be densified rapidly by spark plasma sintering (SPS), which could effectively protect the original distribution of the additive phase in the matrix. In this paper, Cu@RGO/Cu-Ti was prepared and the strengthening mechanism of the composites discussed, providing a new insights into the interface design and carbide formation mechanism of advanced graphene/copper composites with high mechanical properties.


2008 ◽  
Vol 59 ◽  
pp. 138-142 ◽  
Author(s):  
Thomas Köck ◽  
Aurelia Herrmann ◽  
Annegret Brendel ◽  
Harald Bolt

The mechanical properties of a SiC-fiber/copper matrix composite, reinforced with SCS-0 SiC-fibers ( 140µm, Specialty Materials), can significantly be increased by applying a Ti-Ta-C multilayer between fiber and matrix. This interlayer is deposited with a magnetron sputter device directly on the single fibers. By changing the deposition parameters of this sputter process the Ti-Ta-C interlayer can be optimized regarding fiber strength and fiber/matrix adhesion. Experiments with different deposition pressures, bias voltages and layer thickness’ were performed to increase the bond strength and the ultimate tensile strength when compared to the Ti-Ta-C reference sample.


2007 ◽  
Vol 336-338 ◽  
pp. 1414-1416 ◽  
Author(s):  
Li Xu ◽  
Jie Cai Han ◽  
Xing Hong Zhang

The TiB2-40Cu-8Ni composite prepared by combustion synthesis is investigated. Both 2D digital radiography (DR) and 3D computed tomography (CT) are used to test the specimens nondestructively. The result shows that ceramic phase aggregation is the main defect. Then the mechanical properties of samples are assessed by means of three-point-bend test. It appears that mechanical properties are related with the distribution of TiB2 phase and Cu phase. The scanning electron microscope (SEM) is also used to observe the crack growth of the bending test sample.


Sign in / Sign up

Export Citation Format

Share Document