Commercial cellulases from Trichoderma longibrachiatum enable a large-scale production of chito-oligosaccharides

2016 ◽  
Vol 88 (9) ◽  
pp. 865-872 ◽  
Author(s):  
Gregor Tegl ◽  
Christoph Öhlknecht ◽  
Robert Vielnascher ◽  
Paul Kosma ◽  
Andreas Hofinger-Horvath ◽  
...  

AbstractChito-oligosaccharides (COSs) are a substance class of high interest due to various beneficial bioactive properties. However, detailed mechanistic and application-related investigations are limited due to the poor availability of COSs with defined structural properties. Here, we present the large-scale production of COSs with defined degree of N-acetylation using a commercial cellulase preparation from Trichoderma longibrachiatum. The enzyme preparation was found to exclusively produce COSs lacking of acetyl groups while MS/MS analysis indicated a cellobiohydrolase to be the responsible for hydrolysis with the enzyme preparation. MS and NMR analysis proved the low content of acetyl groups in the COS mix and oligomers with a degree of polymerization (DP) of 2–6 were obtained. The low cost enzyme source was further exploited for large-scale production in a 20 g batch and resulted a COSs yield of 40%. An inexpensive enzyme source for the production of bioactive COSs was successfully implemented and thorough product analysis resulted in well-defined COSs. This strategy could improve the access to this substance class for a more detailed investigation of its various biological activities.

2020 ◽  
Vol 10 (2) ◽  
pp. 95-108
Author(s):  
Khushbu Gupta ◽  
Tejpal Singh Chundawat

In recent time, green synthesis of Metal Nanoparticles (MNPs) is the latest developing technology and received exceptional interest because it is simple, eco-friendly, pollutant-free, nontoxic, and a low-cost approach. Green route of biogenic synthesis of metal nanoparticles via microbes (bacteria, fungi, virus, yeast, algae etc.) has the potential to deliver clean manufacturing technology. Fungi are in the great use for the synthesis of nanoparticles and are more advantageous as compared with other microorganisms in several ways. Fungi grow in the form of a group of mycelia, which helps them to withstand flow pressure and agitation and various other conditions to which microbes are subjected to in a bioreactor, used for large-scale production. This review has its major focus on fungus Fusarium oxysporum, which is capable of synthesizing a large number of different types of nanoparticles such as titanium, magnesium, platinum, silver, gold, zirconium, and strontium, titania and silica oxide and many more. Biogenically synthesized nanoparticles are characterized by different techniques and exhibited biological activity. The fungi with metabolic capabilities can effectively synthesize a large number of nanoparticles both extracellularly and intracellularly. The biologically synthesized nanoparticles have wide ranges of applications especially in agricultural and medicinal industries.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


2020 ◽  
Author(s):  
Diletta Morelli Venturi ◽  
Filippo Campana ◽  
Fabio Marmottini ◽  
Ferdinando Costantino ◽  
Luigi Vaccaro

<p>Zirconium based Metal-Organic Framework UiO-66 is to date considered one of the benchmark compound among stable MOFs and it has attracted a huge attention for its employment in many strategic applications. Large scale production of UiO-66 for industrial purposes requires the use of safe and green solvents, fulfilling the green chemistry principles and able to replace the use of <i>N,N</i>-Dimethyl-Formamide (DMF), which, despite its toxicity, is still considered the most efficient solvent for obtaining UiO-66 of high quality. Herein we report on a survey of about 40 different solvents with different polarity, boiling point and acidity, used for the laboratory scale synthesis of high quality UiO-66 crystals. The solvents were chosen according the European REACH Regulation 1907/2006 among those having low cost, low toxicity and fully biodegradable. Concerning MOF synthesis, the relevant parameters chosen for establishing the quality of the results obtained are the degree are the crystallinity, microporosity and specific surface area, yield and solvent recyclability. Taking into account also the chemical physical properties of all the solvents, a color code was assigned in order to give a final green assessment for the UiO-66 synthesis. Defectivity of the obtained products, the use of acidic modulators and the use of alternative Zr-salts have been also taken into consideration. Preliminary results lead to conclude that GVL (γ-valerolactone) is among the most promising solvents for replacing DMF in UiO-66 MOF synthesis. </p>


2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


2020 ◽  
Author(s):  
Diletta Morelli Venturi ◽  
Filippo Campana ◽  
Fabio Marmottini ◽  
Ferdinando Costantino ◽  
Luigi Vaccaro

<p>Zirconium based Metal-Organic Framework UiO-66 is to date considered one of the benchmark compound among stable MOFs and it has attracted a huge attention for its employment in many strategic applications. Large scale production of UiO-66 for industrial purposes requires the use of safe and green solvents, fulfilling the green chemistry principles and able to replace the use of <i>N,N</i>-Dimethyl-Formamide (DMF), which, despite its toxicity, is still considered the most efficient solvent for obtaining UiO-66 of high quality. Herein we report on a survey of about 40 different solvents with different polarity, boiling point and acidity, used for the laboratory scale synthesis of high quality UiO-66 crystals. The solvents were chosen according the European REACH Regulation 1907/2006 among those having low cost, low toxicity and fully biodegradable. Concerning MOF synthesis, the relevant parameters chosen for establishing the quality of the results obtained are the degree are the crystallinity, microporosity and specific surface area, yield and solvent recyclability. Taking into account also the chemical physical properties of all the solvents, a color code was assigned in order to give a final green assessment for the UiO-66 synthesis. Defectivity of the obtained products, the use of acidic modulators and the use of alternative Zr-salts have been also taken into consideration. Preliminary results lead to conclude that GVL (γ-valerolactone) is among the most promising solvents for replacing DMF in UiO-66 MOF synthesis. </p>


RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37830-37836 ◽  
Author(s):  
Wei Wei ◽  
Linlin Guo ◽  
Xiaoyang Qiu ◽  
Peng Qu ◽  
Maotian Xu ◽  
...  

Although many routes have been developed that can efficiently improve the electrochemical performance of LiFePO4 cathodes, few of them meet the urgent industrial requirements of large-scale production, low cost and excellent performance.


2015 ◽  
Vol 1116 ◽  
pp. 45-50
Author(s):  
Tarek I.A. Mashreki ◽  
Mohammad Afzaal

Nanocomposites containing inorganic semiconductor nanomaterials are of tremendous interest for low-cost 3rd generation solar cells. A variety of possible materials and structures could be potentially used to reduce processing costs which is highly attractive for large scale production of solar cells. Controlling the morphology and surface chemistry of nanomaterials remains a key challenge that has major knock-on effects in devices. Herein, an attempt is made to highlight some of the challenges and the possible solutions for depositing high quality thin film composites for solar cell devices.


CrystEngComm ◽  
2018 ◽  
Vol 20 (21) ◽  
pp. 2989-2995 ◽  
Author(s):  
Weikun Chen ◽  
Pinqiang Dai ◽  
Chunfu Hong ◽  
Chan Zheng ◽  
Weiguo Wang ◽  
...  

We demonstrate a green method based on sonochemistry for large-scale production of akaganéite nanoparticles and assemblies in low cost.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 601 ◽  
Author(s):  
Joana Figueira ◽  
Cristina Gaspar ◽  
José Tiago Carvalho ◽  
Joana Loureiro ◽  
Elvira Fortunato ◽  
...  

Low-cost and large-scale production techniques for flexible electronics have evolved greatly in recent years, having great impact in applications such as wearable technology and the internet of things. In this work, we demonstrate fully screen-printed UV photodetectors, successfully fabricated at a low temperature on a cork substrate, using as the active layer a mixture of zinc oxide nanoparticles and ethylcellulose. The photoresponse under irradiation with a UV lamp with peak emission at 302 nm exhibited a quasi-quadratic behavior directly proportional to the applied voltage, with a photocurrent of about 5.5 and 20 μA when applying 1.5 V and 5 V, respectively. The dark current stayed below 150 nA, while the rise and falling times were, respectively, below 5 and 2 s for both applied voltages. The performance was stable over continuous operation and showed a degradation of only 9% after 100 bending cycles in a 45 mm radius test cylinder. These are promising results regarding the use of this type of sensor in wearable applications such as cork hats, bracelets, or bags.


Sign in / Sign up

Export Citation Format

Share Document