scholarly journals Cyanobacteria—From the Oceans to the Potential Biotechnological and Biomedical Applications

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.

2019 ◽  
Vol 7 (10) ◽  
pp. 387 ◽  
Author(s):  
Monica Salamone ◽  
Aldo Nicosia ◽  
Giulio Ghersi ◽  
Marcello Tagliavia

Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mai Abdeen ◽  
Soraya Sabry ◽  
Hanan Ghozlan ◽  
Ahmed A. El-Gendy ◽  
Everett E. Carpenter

Magnetic Fe and Fe3O4 (magnetite) nanoparticles are successfully synthesized using Aspergillus niger YESM 1 and supercritical condition of liquids. Aspergillus niger is used for decomposition of FeSO4 and FeCl3 to FeS and Fe2O3, respectively. The produced particles are exposed to supercritical condition of ethanol for 1 hour at 300°C and pressure of 850 psi. The phase structure and the morphology measurements yield pure iron and major Fe3O4 spherical nanoparticles with average size of 18 and 50 nm, respectively. The crystal size amounts to 9 nm for Fe and 8 nm for Fe3O4. The magnetic properties are measured to exhibit superparamagnetic- and ferromagnetic-like behaviors for Fe and Fe3O4 nanoparticles, respectively. The saturation magnetization amounts to 112 and 68 emu/g for Fe and Fe3O4, respectively. The obtained results open new route for using the biophysical method for large-scale production of highly magnetic nanoparticles to be used for biomedical applications.


Vaccine ◽  
1989 ◽  
Vol 7 (2) ◽  
pp. 189
Author(s):  
N. Barrett ◽  
A. Mitterer ◽  
J. Eibl ◽  
M. Eibl ◽  
B. Moss ◽  
...  

1989 ◽  
Vol 5 (2) ◽  
pp. 159-171 ◽  
Author(s):  
NOEL BARRETT ◽  
ARTUR MITTERER ◽  
WOLFGANG MUNDT ◽  
JOHANN EIBL ◽  
MARTHA EIBL ◽  
...  

2020 ◽  
Vol 24 (17) ◽  
pp. 1999-2018
Author(s):  
Vitor F. Ferreira ◽  
Thais de B. da Silva ◽  
Fernanda P. Pauli ◽  
Patricia G. Ferreira ◽  
Luana da S. M. Forezi ◽  
...  

Molecular rearrangements are important tools to increase the molecular diversity of new bioactive compounds, especially in the class of heterocycles. This review deals specifically with a very famous and widely applicable rearrangement known as the Dimroth Rearrangement. Although it has originally been observed for 1,2,3-triazoles, its amplitude was greatly expanded to other heterocycles, as well as from laboratory to large scale production of drugs and intermediates. The reactions that were discussed in this review were selected with the aim of demonstrating the windows that may be open by the Dimroth's rearrangement, especially in what regards the development of new synthetic approaches toward biologically active compounds.


2016 ◽  
Vol 88 (9) ◽  
pp. 865-872 ◽  
Author(s):  
Gregor Tegl ◽  
Christoph Öhlknecht ◽  
Robert Vielnascher ◽  
Paul Kosma ◽  
Andreas Hofinger-Horvath ◽  
...  

AbstractChito-oligosaccharides (COSs) are a substance class of high interest due to various beneficial bioactive properties. However, detailed mechanistic and application-related investigations are limited due to the poor availability of COSs with defined structural properties. Here, we present the large-scale production of COSs with defined degree of N-acetylation using a commercial cellulase preparation from Trichoderma longibrachiatum. The enzyme preparation was found to exclusively produce COSs lacking of acetyl groups while MS/MS analysis indicated a cellobiohydrolase to be the responsible for hydrolysis with the enzyme preparation. MS and NMR analysis proved the low content of acetyl groups in the COS mix and oligomers with a degree of polymerization (DP) of 2–6 were obtained. The low cost enzyme source was further exploited for large-scale production in a 20 g batch and resulted a COSs yield of 40%. An inexpensive enzyme source for the production of bioactive COSs was successfully implemented and thorough product analysis resulted in well-defined COSs. This strategy could improve the access to this substance class for a more detailed investigation of its various biological activities.


1998 ◽  
Vol 7 (5) ◽  
pp. 437-448 ◽  
Author(s):  
BRUCE L. LEVINE ◽  
JULIO COTTE ◽  
CAROLYNN C. SMALL ◽  
RICHARD G. CARROLL ◽  
JAMES L. RILEY ◽  
...  

Amylase ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Gregory L. Côté ◽  
Christopher A. Dunlap ◽  
Karl E. Vermillion ◽  
Christopher D. Skory

AbstractCertain lactic acid bacteria produce glycosyltransferases known as glucansucrases, which synthesize α-D-glucans via glucosyl transfer from sucrose. We recently reported on the formation of the unusual trisaccharide isomelezitose in low yields by a variety of glucansucrases. Isomelezitose is a rare non-reducing trisaccharide, with the structure α-d-glucopyranosyl- (1→6)-β-d-fructofuranosyl-(2↔1)-α-d-glucopyranoside. In this work, we describe the synthesis of isomelezitose in high yields by variants of glucansucrases engineered to contain a single point mutation at a key leucine residue involved in acceptor substrate binding. Some variants produce isomelezitose in yields up to 57%. This method is amenable to large-scale production of isomelezitose for food, industrial and biomedical applications.


Author(s):  
Hao-ran Liu ◽  
Nadeem Ahmad ◽  
Bo Lv ◽  
Chun Li

Ursolic acid (UA) is a ursane-type pentacyclic triterpenoid compound, naturally produced in plants via specialized metabolism and exhibits vast range of remarkable physiological activities and pharmacological manifestations. Owing to significant safety and efficacy in different medical conditions, UA may serve as a backbone to produce its derivatives with novel therapeutic functions. This review systematically provides an overview of the pharmacological activities, acquisition methods and structural modification methods of UA. In addition, we focused on the synthetic modifications of UA to yield its valuable derivatives with enhanced therapeutic potential. Furthermore, harnessing the essential advances for green synthesis of UA and its derivatives by advent of metabolic engineering and synthetic biology are highlighted. In combination with the advantages of UA biosynthesis and transformation strategy, large-scale production and applications of UA is a promising platform for further exploration.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Chia-Chien Hsieh ◽  
Blanca Hernández-Ledesma ◽  
Samuel Fernández-Tomé ◽  
Valerie Weinborn ◽  
Daniela Barile ◽  
...  

Milk is the most complete food for mammals, as it supplies all the energy and nutrients needed for the proper growth and development of the neonate. Milk is a source of many bioactive components, which not only help meeting the nutritional requirements of the consumers, but also play a relevant role in preventing various disorders. Milk-derived proteins and peptides have the potential to act as coadjuvants in conventional therapies, addressing cardiovascular diseases, metabolic disorders, intestinal health, and chemopreventive properties. In addition to being a source of proteins and peptides, milk contains complex oligosaccharides that possess important functions related to the newborn’s development and health. Some of the health benefits attributed to milk oligosaccharides include prebiotic probifidogenic effects, antiadherence of pathogenic bacteria, and immunomodulation. This review focuses on recent findings demonstrating the biological activities of milk peptides, proteins, and oligosaccharides towards the prevention of diseases of the 21st century. Processing challenges hindering large-scale production and commercialization of those bioactive compounds have been also addressed.


Sign in / Sign up

Export Citation Format

Share Document