2D GeSe2 amorphous monolayer

2019 ◽  
Vol 91 (11) ◽  
pp. 1787-1796 ◽  
Author(s):  
Bo Zhang ◽  
Tomas Mikysek ◽  
Veronika Cicmancova ◽  
Stanislav Slang ◽  
Roman Svoboda ◽  
...  

Abstract In this paper, GeSe2 thin film and glass ingot were prepared in a layered structure. Subsequently, the 2D amorphous monolayers were achieved from layered thin film and layered glass ingot. The thicknesses of monolayers from thin film range from 1.5 nm to 5 nm. And the thickness of monolayer from glass ingot is 7 μm. The fast cooling of material results in the formation of self-assembled monolayers. In the case of thin film, layers are connected with “bridge”. After doping of Ag, the precipitation of nano particles exfoliates the adjacent monolayers which can be further dispersed by etching of Ag particles. In the case of glass ingot, the composition changes at 1 % between adjacent monolayers, according to EDX (energy-dispersive X-ray spectroscopy) spectra. And the glass 2D monolayer can be mechanically peeled off from the glass ingot.

Author(s):  
J N Chapman ◽  
W A P Nicholson

Energy dispersive x-ray microanalysis (EDX) is widely used for the quantitative determination of local composition in thin film specimens. Extraction of quantitative data is usually accomplished by relating the ratio of the number of atoms of two species A and B in the volume excited by the electron beam (nA/nB) to the corresponding ratio of detected characteristic photons (NA/NB) through the use of a k-factor. This leads to an expression of the form nA/nB = kAB NA/NB where kAB is a measure of the relative efficiency with which x-rays are generated and detected from the two species.Errors in thin film x-ray quantification can arise from uncertainties in both NA/NB and kAB. In addition to the inevitable statistical errors, particularly severe problems arise in accurately determining the former if (i) mass loss occurs during spectrum acquisition so that the composition changes as irradiation proceeds, (ii) the characteristic peak from one of the minority components of interest is overlapped by the much larger peak from a majority component, (iii) the measured ratio varies significantly with specimen thickness as a result of electron channeling, or (iv) varying absorption corrections are required due to photons generated at different points having to traverse different path lengths through specimens of irregular and unknown topography on their way to the detector.


2010 ◽  
Vol 105-106 ◽  
pp. 270-273
Author(s):  
Hui Jun Ren ◽  
Guo Qiang Tan ◽  
Hong Yan Miao ◽  
Ya Yu Song ◽  
Ao Xia

In this article, (NH4)2TiF6, SrNO3 and H3BO3 were used as raw materials to prepare the precursor solution with the ratio of AHFT/SN/BA=1:1:3. The thin films of SrTiO3 were fabricated on the functional silicon substrates (100) by self-assembled monolayers (SAMs) with the liquid phase deposition (LPD). This article also studied the effects of wet state and the deposition temperature of the precursor solution before and after the functionalization of silicon substrate on the thin film growth. The results indicated that after the immersion in OTS for 30min, the surface contact angle of the silicon substrate changed from 24.64° to 100.91°. The substrate appeared hydrophobic property and it was irradiated by UV light for 30min. Then the surface contact angle of the substrate decreased to 5.00°. The substrate appeared hydrophilicity. The concentration of the precursor solution was 0.025 mol/L, the deposition temperature was 40°C and the deposition time was 9h, which were all helpful to SrTiO3 crystallization. XRD and SEM were used to characterize the physical phase of thin film and surface morphology at 600 °C with annealing and heat retaining for 2h. The results indicated that the thin film prepared by the mono-crystal Si substrate was SrTiO3 thin film with better crystalline. On the crystal surfaces of (110), (100), (200) and (211), there appeared the obvious diffraction peaks. The SrTiO3 grains on the surface had the clear outline and were regular and long columnar crystals.


2012 ◽  
Vol 3 ◽  
pp. 12-24 ◽  
Author(s):  
Hicham Hamoudi ◽  
Ping Kao ◽  
Alexei Nefedov ◽  
David L Allara ◽  
Michael Zharnikov

Self-assembled monolayers (SAMs) of nitrile-substituted oligo(phenylene ethynylene) thiols (NC-OPEn) with a variable chain length n (n ranging from one to three structural units) on Au(111) were studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and near-edge absorption fine-structure spectroscopy. The experimental data suggest that the NC-OPEn molecules form well-defined SAMs on Au(111), with all the molecules bound to the substrate through the gold–thiolate anchor and the nitrile tail groups located at the SAM–ambient interface. The packing density in these SAMs was found to be close to that of alkanethiolate monolayers on Au(111), independent of the chain length. Similar behavior was found for the molecular inclination, with an average tilt angle of ~33–36° for all the target systems. In contrast, the average twist of the OPEn backbone (planar conformation) was found to depend on the molecular length, being close to 45° for the films comprising the short OPE chains and ~53.5° for the long chains. Analysis of the data suggests that the attachment of the nitrile moiety, which served as a spectroscopic marker group, to the OPEn backbone did not significantly affect the molecular orientation in the SAMs.


Langmuir ◽  
2004 ◽  
Vol 20 (16) ◽  
pp. 6964-6964 ◽  
Author(s):  
Young-Hye La ◽  
Yu Jin Jung ◽  
Hyun Ju Kim ◽  
Tai-Hee Kang ◽  
Kyuwook Ihm ◽  
...  

2009 ◽  
Vol 610-613 ◽  
pp. 147-154
Author(s):  
Yao Bo Hu ◽  
Fu Sheng Pan ◽  
Jing Feng Wang

Titanium dioxide (TiO2) thin film was fabricated on the surface of glass monolayers at room temperature, using KH-550 as self-assembled monolayers (SAMs). The TiO2 gel precursor was characterized with differential scanning calorimetry – thermogravimetry (DSC-TG), and the TiO2 powder was analyzed with X-ray diffraction (XRD). The TiO2 thin film was tested with X-ray fluorescence spectroscopy (XRF). With the application of atomic force microscope (AFM) the surface topography of siloxane layer and TiO2 film were studied. Their hydrophilicities were measured. The transmittance of TiO2 film was detected by using dual beam ultraviolet - visible spectrophotometer. The results show that the TiO2 thin film is in monolayer with nanometer level, the deposition is the anatase structure. TiO2 is deposited on the surface instead of channel or gap of siloxane, the hydrophilicities of TiO2 monolayer film are perfect, and TiO2 monolayer film has a good transmissivity in the visible light area.


2014 ◽  
Vol 104 (5) ◽  
pp. 051607 ◽  
Author(s):  
Peng Xiao ◽  
Linfeng Lan ◽  
Ting Dong ◽  
Zhenguo Lin ◽  
Wen Shi ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 101834-101839
Author(s):  
Wei Zhong ◽  
Ruohe Yao ◽  
Zhijian Chen ◽  
Linfeng Lan ◽  
Rongsheng Chen

Sign in / Sign up

Export Citation Format

Share Document