scholarly journals Recent Progress in Search for Dark Sector Signatures

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 281-303 ◽  
Author(s):  
Maksym Deliyergiyev

AbstractMany difficulties are encountered when attempting to pinpoint a common origin for several observed astrophysical anomalies, and when assessing their tension with existing exclusion limits. These include systematic uncertainties affecting the operation of the detectors, our knowledge of their response, astrophysical uncertainties, and the broad range of particle couplings that can mediate interaction with a detector target. Particularly interesting astrophysical evidence has motivated a search for dark-photon, and focused our attention on a Hidden Valleys model with a GeV-scale dark sector that produces exciting signatures. Results from recent underground experiments are also considered.There is a ‘light’ hidden sector (dark sector), present in many models of new physics beyond the Standard Model, which contains a colorful spectrum of new particles. Recently, it has been shown that this spectrum can give rise to unique signatures at colliders when the mass scale in the hidden sector is well below a TeV; as in Hidden Valleys, Stueckelberg extensions, and Unparticle models. These physics models produce unique signatures of collimated leptons at high energies. By studying these ephemeral particles we hope to trace the history of the Universe. Our present theories lead us to believe that there is something new just around the corner, which should be accessible at the energies made available by modern colliders.

2021 ◽  
Author(s):  
Theodota Lagouri

Abstract The Standard Model (SM), while extremely powerful as a description of the strong, electromagnetic and weak interactions, does not provide a natural candidate to explain Dark Matter (DM). Theoretical as well as experimental motivation exists for the existence of a hidden or dark sector of phenomena that couples either weakly or in a special way to SM fields. Hidden sector or dark sector states appear in many extensions to SM to provide a particular candidate DM in the universe or to explain astrophysical observations. If there is such a family of Beyond the Standard Model (BSM) particles and interactions, they may be accessible experimentally at the Large Hadron Collider (LHC) at CERN and at future High Energy Colliders. In this paper, the main focus is given on selected searches conducted at LHC experiments related to Higgs Hidden-Dark Sector Physics. The current constraints and future prospects of these studies are summarized.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Moritz Breitbach ◽  
Luca Buonocore ◽  
Claudia Frugiuele ◽  
Joachim Kopp ◽  
Lukas Mittnacht

Abstract Next generation neutrino oscillation experiments like DUNE and T2HK are multi-purpose observatories, with a rich physics program beyond oscillation measurements. A special role is played by their near detector facilities, which are particularly well-suited to search for weakly coupled dark sector particles produced in the primary target. In this paper, we demonstrate this by estimating the sensitivity of the DUNE near detectors to the scattering of sub-GeV DM particles and to the decay of sub-GeV sterile neutrinos (“heavy neutral leptons”). We discuss in particular the importance of the DUNE-PRISM design, which allows some of the near detectors to be moved away from the beam axis. At such off-axis locations, the signal-to-background ratio improves for many new physics searches. We find that this leads to a dramatic boost in the sensitivity to boosted DM particles interacting mainly with hadrons, while for boosted DM interacting with leptons, data taken on-axis leads to marginally stronger exclusion limits. Searches for heavy neutral leptons perform equally well in both configurations.


Author(s):  
Chitta Ranjan Das ◽  
Katri Huitu ◽  
Zhanibek Kurmanaliyev ◽  
Bakytbek Mauyey ◽  
Timo Kärkkäinen

The crucial phenomenological and experimental predictions for new physics are outlined, where the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, leptonic CP-violation) could find their solutions. The analogies between the cosmological neutrino mass scale from the early universe data and laboratory probes are discussed and the search for new physics and phenomena.


2021 ◽  
Vol 136 (2) ◽  
Author(s):  
Salvatore Capozziello ◽  
Gaetano Lambiase

AbstractThe gravitino problem is investigated in the framework of extended gravity cosmologies. In particular, we consider f(R) gravity, the most natural extension of the Hilbert–Einstein action, and $$f({\mathcal{T}})$$ f ( T ) gravity, the extension of teleparallel equivalent gravity. Since in these theories, the expansion laws of the Universe are modified, as compared to the standard $$\Lambda $$ Λ CDM cosmology, it follows that also the thermal history of particles gets modified. We show that f(R) models allow to avoid the late abundance of gravitinos. In particular, we found that for an appropriate choice of the parameters characterizing the f(R) model, the gravitino abundance turns out to be independent of the reheating temperature. A similar behavior is achieved also in the context of $$f({\mathcal{T}})$$ f ( T ) gravity. In this perspective, we can conclude that geometric corrections to standard General Relativity (and to Teleparallel Equivalent of General Relativity) can improve shortcomings both in cosmology and in unified theories beyond the standard model of particles.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Basabendu Barman ◽  
Subhaditya Bhattacharya ◽  
Bohdan Grzadkowski

Abstract A model of dark matter (DM) that communicates with the Standard Model (SM) exclusively through suppressed dimension five operator is discussed. The SM is augmented with a symmetry U(1)X ⊗ Z2, where U(1)X is gauged and broken spontaneously by a very heavy decoupled scalar. The massive U(1)X vector boson (Xμ) is stabilized being odd under unbroken Z2 and therefore may contribute as the DM component of the universe. Dark sector field strength tensor Xμν couples to the SM hypercharge tensor Bμν via the presence of a heavier Z2 odd real scalar Φ, i.e. 1/Λ XμνBμνΦ, with Λ being a scale of new physics. The freeze-in production of the vector boson dark matter feebly coupled to the SM is advocated in this analysis. Limitations of the so-called UV freeze-in mechanism that emerge when the maximum reheat temperature TRH drops down close to the scale of DM mass are discussed. The parameter space of the model consistent with the observed DM abundance is determined. The model easily and naturally avoids both direct and indirect DM searches. Possibility for detection at the Large Hadron Collider (LHC) is also considered. A Stueckelberg formulation of the model is derived.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Krzysztof Jodłowski ◽  
Sebastian Trojanowski

Abstract The neutrino physics program at the LHC, which will soon be initiated by the FASER experiment, will provide unique opportunities for precision studies of neutrino interaction vertices at high energies. This will also open up the possibility to search for beyond the standard model (BSM) particles produced in such interactions in the specific high-energy neutrino beam-dump experiment. In this study, we illustrate the prospects for such searches in models with the dipole or Z′ portal to GeV-scale heavy neutral leptons. To this end, we employ both the standard signature of new physics that consists of a pair of oppositely-charged tracks appearing in the decay vessel, and the additional types of searches. These include high-energy photons and single scattered electrons. We show that such a variety of experimental signatures could significantly extend the sensitivity reach of the future multi-purpose FASER 2 detector during the High-Luminosity phase of the LHC.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 313
Author(s):  
Pietro Di Gangi

Dark matter is a milestone in the understanding of the Universe and a portal to the discovery of new physics beyond the Standard Model of particles. The direct search for dark matter has become one of the most active fields of experimental physics in the last few decades. Liquid Xenon (LXe) detectors demonstrated the highest sensitivities to the main dark matter candidates (Weakly Interactive Massive Particles, WIMP). The experiments of the XENON project, located in the underground INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, are leading the field thanks to the dual-phase LXe time projection chamber (TPC) technology. Since the first prototype XENON10 built in 2005, each detector of the XENON project achieved the highest sensitivity to WIMP dark matter. XENON increased the LXe target mass by nearly a factor 400, up to the 5.9 t of the current XENONnT detector installed at LNGS in 2020. Thanks to an unprecedentedly low background level, XENON1T (predecessor of XENONnT) set the world best limits on WIMP dark matter to date, for an overall boost of more than 3 orders of magnitude to the experimental sensitivity since the XENON project started. In this work, we review the principles of direct dark matter detection with LXe TPCs, the detectors of the XENON project, the challenges posed by background mitigation to ultra-low levels, and the main results achieved by the XENON project in the search for dark matter.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


2007 ◽  
Vol 22 (18) ◽  
pp. 1319-1328 ◽  
Author(s):  
ASHUTOSH KUMAR ALOK ◽  
S. UMA SANKAR

We consider the effect of new physics on the branching ratio of Bs → l+l-γ where l = e, μ. If the new physics is of the form scalar/pseudoscalar, then it makes no contribution to Bs → l+l-γ, unlike in the case of Bs → l+l-, where it can potentially make a very large contribution. If the new physics is in the form of vector/axial-vector operators, then the present data on B → (K, K*) l+l- does not allow a large enhancement for B(Bs → l+l- γ). If the new physics is in the form of tensor/pseudotensor operators, then the data on B → (K, K*) l+l- gives no useful constraint but the data on B → K* γ does. Here again, a large enhancement of B(Bs → l+l-γ), much beyond the Standard Model expectation, is not possible. Hence, we conclude that the present data on b → s transitions allow a large boost in B(Bs → l+l-) but not in B(Bs → l+l-γ).


Sign in / Sign up

Export Citation Format

Share Document