scholarly journals Neutrino beam-dump experiment with FASER at the LHC

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Krzysztof Jodłowski ◽  
Sebastian Trojanowski

Abstract The neutrino physics program at the LHC, which will soon be initiated by the FASER experiment, will provide unique opportunities for precision studies of neutrino interaction vertices at high energies. This will also open up the possibility to search for beyond the standard model (BSM) particles produced in such interactions in the specific high-energy neutrino beam-dump experiment. In this study, we illustrate the prospects for such searches in models with the dipole or Z′ portal to GeV-scale heavy neutral leptons. To this end, we employ both the standard signature of new physics that consists of a pair of oppositely-charged tracks appearing in the decay vessel, and the additional types of searches. These include high-energy photons and single scattered electrons. We show that such a variety of experimental signatures could significantly extend the sensitivity reach of the future multi-purpose FASER 2 detector during the High-Luminosity phase of the LHC.

2018 ◽  
Vol 179 ◽  
pp. 01002
Author(s):  
Giovanni De Lellis

The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry of the Universe, which deserve an explanation that could come from the discovery of new particles. The SHiP experiment at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. Indeed, tau anti-neutrinos have not been directly observed so far. We report the physics potential of such an experiment including the tau neutrino magnetic moment.


2005 ◽  
Vol 20 (22) ◽  
pp. 5164-5173 ◽  
Author(s):  
BEATE HEINEMANN

Recent searches for physics beyond the Standard Model at high energy colliders are presented. The main focus is on searches for supersymmetry, extra dimensions and new gauge bosons. In all search analyses the data are found to agree well with the Standard Model background expectation and no evidence for contributions from physics beyond the Standard Model is found. The data are thus used to place limits on new physics scenarios.


2006 ◽  
Vol 21 (27) ◽  
pp. 5381-5403 ◽  
Author(s):  
Ian Shipsey

The role of charm in testing the Standard Model description of quark mixing and CP violation through measurements of lifetimes, decay constants and semileptonic form factors is reviewed. Together with Lattice QCD, charm has the potential this decade to maximize the sensitivity of the entire flavor physics program to new physics and pave the way for understanding physics beyond the Standard Model at the LHC in the coming decade. The status of indirect searches for physics beyond the Standard Model through charm mixing, CP-violation and rare decays is also reported.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Xi-Yan Tian ◽  
Liu-Feng Du ◽  
Yao-Bei Liu

AbstractThe vectorlike top partners are potential signature of some new physics beyond the Standard Model at the TeV scale. In this paper, we propose to search for the vectorlike T quark with charge 2/3 in the framework of a simplified model where the top partners only couples with the third generation of Standard Model quarks. We investigate the observability for electroweak production of a vectorlike T quark in association with a standard model bottom quark through the process $$pp \rightarrow T\bar{b}j$$ p p → T b ¯ j with the subsequent decay mode of $$T\rightarrow t(\rightarrow b W^+\rightarrow b \ell ^{+} \nu _{\ell })h( \rightarrow \gamma \gamma )$$ T → t ( → b W + → b ℓ + ν ℓ ) h ( → γ γ ) , at the proposed High Energy Large Hadron Collider (HE-LHC) and Future Circular Collider in hadron-hadron mode (FCC-hh) including the realistic detector effects. The 95% confidence level excluded regions and the $$5\sigma $$ 5 σ discovery reach in the parameter plane of $$\kappa _{T}-m_T$$ κ T - m T , are respectively obtained at the HE-LHC with the integrated luminosity of 15 ab$$^{-1}$$ - 1 and the FCC-hh with the integrated luminosity of 30 ab$$^{-1}$$ - 1 . We also analyze the projected sensitivity in terms of the production cross section times branching fraction at the HE-LHC and FCC-hh.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Tao Han ◽  
Wolfgang Kilian ◽  
Nils Kreher ◽  
Yang Ma ◽  
Jürgen Reuter ◽  
...  

Abstract We explore the sensitivity of directly testing the muon-Higgs coupling at a high-energy muon collider. This is strongly motivated if there exists new physics that is not aligned with the Standard Model Yukawa interactions which are responsible for the fermion mass generation. We illustrate a few such examples for physics beyond the Standard Model. With the accidentally small value of the muon Yukawa coupling and its subtle role in the high-energy production of multiple (vector and Higgs) bosons, we show that it is possible to measure the muon-Higgs coupling to an accuracy of ten percent for a 10 TeV muon collider and a few percent for a 30 TeV machine by utilizing the three boson production, potentially sensitive to a new physics scale about Λ ∼ 30 − 100 TeV.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Moritz Breitbach ◽  
Luca Buonocore ◽  
Claudia Frugiuele ◽  
Joachim Kopp ◽  
Lukas Mittnacht

Abstract Next generation neutrino oscillation experiments like DUNE and T2HK are multi-purpose observatories, with a rich physics program beyond oscillation measurements. A special role is played by their near detector facilities, which are particularly well-suited to search for weakly coupled dark sector particles produced in the primary target. In this paper, we demonstrate this by estimating the sensitivity of the DUNE near detectors to the scattering of sub-GeV DM particles and to the decay of sub-GeV sterile neutrinos (“heavy neutral leptons”). We discuss in particular the importance of the DUNE-PRISM design, which allows some of the near detectors to be moved away from the beam axis. At such off-axis locations, the signal-to-background ratio improves for many new physics searches. We find that this leads to a dramatic boost in the sensitivity to boosted DM particles interacting mainly with hadrons, while for boosted DM interacting with leptons, data taken on-axis leads to marginally stronger exclusion limits. Searches for heavy neutral leptons perform equally well in both configurations.


2018 ◽  
Vol 182 ◽  
pp. 02096
Author(s):  
James Pinfold

MoEDAL is a pioneering experiment designed to search for highly ionizing messengers of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles, that are predicted to exist in a plethora of models beyond the Standard Model. It started data taking at the LHC at a centre-of-mass energy of 13 TeV, in 2015. MoEDAL’s ground breaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; and what is the nature of dark matter. MoEDAL’s purpose is to meet such far-reaching challenges at the frontier of the field. We will present an overview of the MoEDAL detector, including the planned MAPP subdetector, as well as MoEDAL’s physics program. The concluding section highlights our first physics results on Magnetic Monopole production, that are the world’s best for Monopoles with multiple magnetic charge.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yasaman Farzan

Abstract Observation of high energy cosmic neutrinos by ICECUBE has ushered in a new era in exploring both cosmos and new physics beyond the Standard Model (SM). In the standard picture, although mostly νμ and νe are produced in the source, oscillation will produce ντen route. Certain beyond SM scenarios, like interaction with ultralight DM can alter this picture. Thus, the flavor composition of the cosmic neutrino flux can open up the possibility of exploring certain beyond the SM scenarios that are inaccessible otherwise. We show that the τ flavor holds a special place among the neutrino flavors in elucidating new physics. Interpreting the two anomalous events observed by ANITA as ντ events makes the tau flavor even more intriguing. We study how the detection of the two tau events by ICECUBE constrains the interaction of the neutrinos with ultralight dark matter and discuss the implications of this interaction for even higher energy cosmic neutrinos detectable by future radio telescopes such as ARA, ARIANNA and GRAND. We also revisit the 3 + 1 neutrino scheme as a solution to the two anomalous ANITA events and clarify a misconception that exists in the literature about the evolution of high energy neutrinos in matter within the 3 + 1 scheme with a possibility of scattering off nuclei. We show that the existing bounds on the flux of ντ with energy of EeV rules out this solution for the ANITA events. We show that the 3 + 1 solution can be saved from both this bound and from the bound on the extra relativistic degrees of freedom in the early universe by turning on the interaction of neutrinos with ultralight dark matter.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Lin Han ◽  
Jie-Fen Shen

AbstractNew vector-like quarks are predicted in many new physics scenarios beyond the Standard Model (SM). Based on a model-independent framework, we investigate the prospect of discovering the SU(2) singlet vector-like bottom quark (VLQ-B) in $$e^{+}e^{-}$$ e + e - collisions at 3 TeV Compact Linear Collider. We study the single VLQ-B production process $$e^{-}e^{+}\rightarrow B{\bar{b}}\rightarrow Zb{\bar{b}}$$ e - e + → B b ¯ → Z b b ¯ with two types of decay channel: $$Z\rightarrow \ell ^{+}\ell ^{-}$$ Z → ℓ + ℓ - , and $$Z\rightarrow \nu {\bar{\nu }}$$ Z → ν ν ¯ . By carrying out a full simulation for the signals and the relevant SM backgrounds, the $$2\sigma $$ 2 σ exclusion limit and $$5\sigma $$ 5 σ discovery prospects are, respectively, obtained on the B quark mass and the coupling strength $$g^{*}$$ g ∗ with the integrated luminosity of 5 $$\hbox {ab}^{-1}$$ ab - 1 . Our numerical results show that the possible signals of the singlet VLQ-B might be detected at the future high-energy $$e^{+}e^{-}$$ e + e - linear colliders.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Andy Buckley ◽  
Jonathan Butterworth ◽  
Louie Corpe ◽  
Martin Habedank ◽  
Danping Huang ◽  
...  

Measurements at particle collider experiments, even if primarily aimed at understanding Standard Model processes, can have a high degree of model independence, and implicitly contain information about potential contributions from physics beyond the Standard Model. The CONTUR package allows users to benefit from the hundreds of measurements preserved in the RIVET library to test new models against the bank of LHC measurements to date. This method has proven to be very effective in several recent publications from the CONTUR team, but ultimately, for this approach to be successful, the authors believe that the CONTUR tool needs to be accessible to the wider high energy physics community. As such, this manual accompanies the first user-facing version: CONTUR v2. It describes the design choices that have been made, as well as detailing pitfalls and common issues to avoid. The authors hope that with the help of this documentation, external groups will be able to run their own CONTUR studies, for example when proposing a new model, or pitching a new search.


Sign in / Sign up

Export Citation Format

Share Document