scholarly journals Performance evaluation of chemical coagulation process to treat bagasse wastewater: modeling and optimization

2016 ◽  
Vol 18 (1) ◽  
pp. 99-104 ◽  
Author(s):  
K. Thirugnanasambandham ◽  
V. Sivakumar ◽  
K. Shine

Abstract In this present study, chemical coagulation process (CC) treatment process was investigated under different conditions such as pH, ferric chloride dose, agitation time and settling time to treat bagasse wastewater using response surface methodology (RSM). The outcomes were evaluated using Pareto analysis of variance (ANOVA) and second order polynomial models were created with the aim of being able to predict the responses. Ideal conditions were observed to be as per the following: agitation time of 25 min, pH of 7, ferric chloride dose of 6 g/L and settling time of 60 min. Under these conditions, turbidity removal of 62%, COD removal of 67%, TDS removal 53% and sludge production of 32 mL/L were obtained with operating cost of 3.50 Rupee/L. The mechanism of CC was analyzed using XRD spectrum and founds to be adsorption.

2018 ◽  
Vol 13 (s1) ◽  
pp. 7-13
Author(s):  
S. Babitha Merlin ◽  
M. Abirami ◽  
R. Suresh Kumar

Abstract Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it’s biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant) followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.


2019 ◽  
Vol 16 (8) ◽  
pp. 599 ◽  
Author(s):  
Henry K. Agbovi ◽  
Lee D. Wilson

Environmental contextThe fate and build-up of phosphate nutrients in aquatic environments is an urgent environmental problem affecting global water security. This study, guided by a statistical design method, optimises the flocculation properties of a biopolymer for removing orthophosphate from water. This improved technology has potential widespread applications for removal of orthophosphate from water and wastewater treatment systems. AbstractA coagulation-flocculation process was employed to remove turbidity (Ti) and orthophosphate (Pi) in aqueous media using a ferric chloride (FeCl3) and a grafted carboxymethyl chitosan (CMC) flocculant system. The amphoteric CMC-CTA flocculant was synthesised by grafting 3-chloro-2-hydroxypropyl trimethylammonium chloride (CTA) onto the biopolymer backbone of CMC. Here, CMC-CTA denotes the covalent grafting of CTA onto CMC. Optimisation of the variables for Pi and Ti removal was conducted using a jar test system based on the experimental design obtained from the response surface methodology (RSM). The Box–Behnken design was used to evaluate the individual and interactive effects of four independent variables: CMC-CTA dosage, FeCl3 dosage, pH and settling time. The RSM analysis showed that the experimental data followed a quadratic polynomial model with the following optimal conditions: [CMC-CTA]=3.0mgL−1, [FeCl3]=10.0mgL−1, pH 6.8 and settling time=35min. Optimum conditions led to a Pi removal of 96.4% and turbidity removal of 96.7% based on the RSM optimisation, in good agreement with experimental results with an initial concentration of 30.0mg PiL−1. The coagulation-flocculation process is characterised by a combination of electrostatic charge neutralisation, polymer bridging and a polymer adsorption mechanism.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Nor Aida Yusoff

The study investigated the performance of chitosan and extracted pandan leaves towards treatment of textile wastewater by using flocculation process. Pandan leaves were extracted by using solvent extraction method. Flocculation process was conducted using a Jar test experiment. The effect of dosage, pH, and settling time on reduction of COD, turbidity and color of textile wastewater was studied. The results obtained found that chitosan was very effective for reduction of COD, turbidity, color and indicator for color. The best condition for COD and turbidity removal was achieved at 0.2 g dosage, pH 4 and 60 minutes of settling time. Under this condition, about 58 and 99% of COD and turbidity was removed, respectively. However, the results obtained using extracted pandan was opposite compared to the chitosan. Extracted pandan was not able to remove both COD and turbidity of the waste. 


2018 ◽  
Vol 19 (2) ◽  
pp. 165
Author(s):  
Eka Prihatinningtyas ◽  
Agus Jatnika Effendi

ABSTRACTThe ability of tapioca to act as natural coagulants (biocoagulants) was tested using artificial water. As turbidity was added as kaolin. This research aimed to determine the compounds and or groups that act as natural coagulant and to describe the mechanism of flocculation: extraction which yields tapioca extract and ion exchange which yields ionic tapioca. Coagulation process was performed at three different initial turbidities, i.e. 50 NTU (low turbidities), 150 NTU (middle turbidities) and 300 NTU (high initial turbidites). At the same condition (coagulant dose 20 ppmv, pH 5), ionic tapioca yield better turbidity removal compared tapioca extract i.e 11.2% at low initial turbidites; 2.4% at middle initial turbidities and 12.8% at high initial turbidities. FTIR analysis  showed that tapioca extract and ionic tapioca contained of carboxyl, hydroxyl and amides groups which  can act as active components on coagulation process. The presence of those groups caused positive and negative charges (amphoter). Coagulation process ran efficiently at pH 5 because the isoelectric point is obtained at that condition.Keyword : bio coagulants, coagulation,  coagulant agents, ionic tapioca, tapioca extract,ABSTRAK Kemampuan tepung tapioka sebagai koagulan alami (biokoagulan) telah diuji dengan menggunakan limbah artifisial dari kaolin. Penelitian ini bertujuan untuk menentukan senyawa atau gugus yang berperan sebagai biokoagulan dan menjelaskan mekanisme flokulasi yang terjadi. Perlakuan awal tapioca sebelum digunakan sebagai koagulan adalah ekstraksi yang menghasilkan ekstrak tapioka  dan pertukaran ion  yang menghasilkan tapioka ionik. Proses koagulasi dilakukan pada 3 macam kekeruhan awal yaitu 50 NTU (kekeruhan rendah), 150 NTU (kekeruhan sedang) dan 300 NTU (kekeruhan tinggi). Pada kondisi operasi yang sama (dosis 20 ppmv dan pH 5), tapioka ionik memberikan efisiensi penurunan kekeruhan yang lebih tinggi, yaitu sebesar 11,0% pada kekeruhan awal 50 NTU; 2,4% pada kekeruhan awal 150 NTU dan 12,8% pada kekeruhan awal 300 NTU. Hasil analisa FTIR menunjukkan bahwa ekstrak tapioka dan tapioka ionik mempunyai gugus karboksil (-OH), gugus karboksil (-COOH) dan gugus amida (-CONH2). Keberadaan ketiga gugus tersebut menyebabkan biokoagulan ini memiliki muatan positif dan negatif sekaligus (amfoter). Proses koagulasi berjalan dengan efisien pada pH 5 karena titik isoelektrik diperoleh pada pH tersebut. Kata kunci : biokoagulan, koagulasi, agen koagulan, ekstrak tapioka, tapioka ionik


2017 ◽  
Vol 12 (3) ◽  
pp. 576-588 ◽  
Author(s):  
Seyed Ahmad Mirbagheri ◽  
Sima Malekmohamadi ◽  
Sheida Sohrabi Nasrabadi

Clarifying is one of the most crucial stages in water treatment at water treatment plants. Determining the type of the clarifier in water treatment plants and using it efficiently is necessary. In this study, a pilot is designed and constructed in which the pulsator, the superpulsator and the accelerator are simulated. For each system, turbidity removal efficiency for different influent turbidities and flow rates were studied and the optimum condition was obtained. The results showed that the superpulsator has a superior performance compared to the pulsator, and the pulsator has a superior performance compared to the accelerator and these differences are more sensible at higher flow rates. Also, the best condition for achieving the highest efficiency for the pulsator and the superpulsator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with alum as the coagulant and the highest efficiency for the accelerator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with ferric chloride as the coagulant. Comparing the turbidity removal efficiency shows that for 67% of the cases, ferric chloride has a better performance as the coagulant compared to alum and increasing the influent turbidity leads to an increase in the removal efficiency. Furthermore, three water treatment plants located in Tehran were studied and their characteristics were compared and suggestions were made to enhance their qualities.


2018 ◽  
Vol 38 ◽  
pp. 02004
Author(s):  
Song Du ◽  
Wenbiao Jin ◽  
Feng Duan

In this paper, the circulating cooling wastewater was treated by chemical coagulation process through adding NaOH/Na2CO3.The effect of NaOH and Na2CO3 dose on removal of scale ions, such as Ca2+, Mg2+, Ba2+, Sr2+, SiO2, was studied and the removal mechanism was discussed. The results showed that the increase of NaOH dose was beneficial to the removal of above-mentioned scale ions. When NaOH was only added, the removal efficiency of Ca2+, Mg2+, Ba2+, Sr2+, SiO2 was 86.3%, 91.6%, 86.5%, 58.1%, 84.2%, respectively. When 680 mg/L of NaOH and 300 mg/L of Na2CO3 were added, and the effluent pH was above 11.2, the removal efficiency of Ca2+, Mg2+ was 95.8% and 89.4%, respectively, and the concentration of Ca2+and Mg2+ was below 20 mg/L, which met the target of wastewater treatment. Finally the possible removal mechanism of Ca2+, Mg2+, Ba2+, Sr2+and SiO2 was discussed.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 726 ◽  
Author(s):  
Kimberly Swain ◽  
Bassim Abbassi ◽  
Chris Kinsley

Significant over-strength discharge fees are often imposed on breweries for the disposal of high-strength effluent to sanitary sewers. In this research work, the removal performances of electrocoagulation (EC) compared with operating electrocoagulation and chemical coagulation in sequence (EC-CC) or vice-versa (CC-EC) was examined to determine the capability of treatment in reducing the strength of the wastewater. Optimal operating parameters regarding electrolysis time, initial pH, and applied power were determined in conjunction with nutrient removal performance, electrode consumption and energy usage. Combined EC-CC treatment has been demonstrated to be economically feasible for brewery wastewater applications from an energy consumption perspective due to the efficiency of nutrient removal and the reduction of sewer discharge costs. Treatment by EC-CC at 5 W for 20 min using aluminum electrodes resulted in enhanced and consistent removal efficiencies of 26%, 74%, 76%, and 85% for chemical oxygen demand (COD), reactive phosphorous (RP), total phosphorous (TP) and total suspended solids (TSS), respectively. Energy consumption was the main contributor to operating cost. By considering potential recovered over-strength discharge fees (ODF), EC-CC treatment is economically feasible and beneficial in a brewery wastewater application. The results demonstrated the effectiveness of the CC-EC process to remove phosphorous, organics and solids from brewery wastewater at lower power supply, so that the recovered ODF cost for CC-EC at 5 W-EC is 23% higher than at 10 W-EC.


Sign in / Sign up

Export Citation Format

Share Document